Matrices and Determinants Questions and Answers Part-1

1. Let \[A=\left(\begin{array}{c}a & b\\ c & d\end{array}\right)\]    be such that \[A^{3}=O\]  , but \[A\neq O\]  , then
a) \[A^{2}=O\]
b) \[A^{2}=A\]
c) \[A^{2}=I-A\]
d) none of these

Answer: a
Explanation: As A3 = O, we get |A3| = 0
q1

2. Let S be the set of all real matrices \[A =\begin{bmatrix}a & b \\c & d \end{bmatrix}\]    such that a + d = 3 and \[A'=A^{2}-3A\]   . Then S:
a) is an empty set
b) has exactly one element
c) has exactly two elements
d) has exactly four elements

Answer: a
Explanation:
q2
q2a

3. Let \[A =\begin{bmatrix}a & b \\c & d \end{bmatrix}\]   , be a 2 × 2 matrix where a, b, c, \[d \epsilon\] {0, 1}. The number of such matrices which have inverse is
a) 5
b) 6
c) 7
d) 8

Answer: b
Explanation: det(A) = ad – bc
q3
q3a

4. Let \[A =\begin{bmatrix}a & b \\c & d \end{bmatrix}\]   , where a, b, c, d \[ \epsilon R\] . If \[A -\alpha I\]   is invertible for all a \[\alpha \epsilon\] R, then
a) bc > 0
b) bc=0
c) \[bc> min\left(0,\frac{1}{2}ad\right)\]
d) a=0

Answer: c
Explanation: As A – \[\alpha\] I is invertible for all a \[\epsilon\] R
q4

5. If A + B is a non-singular matrix, then \[A – B – A \left(A + B\right)^{-1}A + B(A + B)^{-1} B\]
equals
a) O
b) I
c) A
d) B

Answer: a
Explanation:
q5

6. If P is a 3 * 3 matrix such that P' = 2P + I, then there exists a column matrix \[X=\left(\begin{array}{c}x\\ y \\ z \end{array}\right)\neq O\]
such that
a) PX = O
b) PX = X
c) PX = 2X
d) PX = -X

Answer: d
Explanation:
q6

7. Let P and Q be \[ 3\times 3\]  matrices with \[P\neq Q\]   If \[ P^{3}=Q^{3}\]  and \[ P^{2}Q=Q^{2}P\]   , then determinant of \[ \left(P^{2}+Q^{2}\right)\]    is equal to
a) 1
b) 0
c) -1
d) -2

Answer: b
Explanation:
q7
q7a

8. Let \[P=\begin{bmatrix}1 & 0 & 0 \\9 & 1 & 0 \\27 & 9 & 1 \end{bmatrix}\]     and \[Q=\left[q_{ij}\right]_{3\times 3}\]    be such that \[P^{5}-Q=I\]  , then \[\frac{q_{21}+q_{31}}{q_{32}}\]   is equal to
a) 22
b) 33
c) 44
d) 55

Answer: a
Explanation: Write P = I + R where
q8

9. Let \[a_{ij}=\left(2+\sqrt{3}\right)^{i+j}+\left(2-\sqrt{3}\right)^{i+j},1 \leq i, j \leq3\]         and let \[A=\left(a_{ij}\right)_{3\times 3}\]     , then det (A) is equal to
a) 1
b) \[\left(2+\sqrt{3}\right)^{9}\]
c) \[\left(2-\sqrt{3}\right)^{9}\]
d) 0

Answer: d
Explanation: For n \[\epsilon\] N
q9

10. If \[A_{\alpha}=\begin{bmatrix}\cos \alpha & \sin\alpha \\-\sin\alpha & \cos\alpha \end{bmatrix}\]     , then \[A_{\alpha}A_{\beta}\]  is equal to
a) \[A_{\alpha+\beta}\]
b) \[A_{\alpha\beta}\]
c) \[A_{\alpha-\beta}\]
d) none of these

Answer: a
Explanation:
q10