Kinematics of Machinery Questions and Answers Part-3

1.The acceleration of a particle at any instant has two components, radial component and tangential component. These two components will be
a) parallel to each other
b) perpendicular to each other
c) inclined at 450
d) opposite to each other

Answer: b
Explanation: Both the components will be perpendicular to each other.

2. The centre of gravity of a coupler link in a four bar mechanism will experience
a) no acceleration
b) only linear acceleration
c) only angular acceleration
d) both linear and angular acceleration

Answer: d
Explanation: both linear and angular acceleration

3. When a point moves along a straight line, its acceleration will have
a) radial component only
b) tangential component only
c) coriolis component only
d) radial and tangential components both

Answer: b
Explanation: The tangential component, is parallel to the velocity of the particle at the given instant. The centripetal or radial component, is perpendicular to the velocity of the particle at the given instant.

4. When a point at the end of a link moves with constant angular velocity, its acceleration will have
a) radial component only
b) tangential component only
c) coriolis component only
d) radial and tangential components both

Answer: a
Explanation: The centripetal or radial component, is perpendicular to the velocity of the particle at the given instant.
The tangential component, is parallel to the velocity of the particle at the given instant.

5. In a shaper mechanism, the coriolis component of acceleration does not exists.
a) True
b) False

Answer: b
Explanation: In a shaper mechanism, the coriolis component of acceleration exists.

6. The tangential component of acceleration of the slider with respect to the coincident point on the link is called coriolis component of acceleration
a) True
b) False

Answer: a
Explanation: When a point on one link is sliding along another rotating link, such as in quick return motion mechanism, then the coriolis component of the acceleration must be calculated.

7. The coriolis component of acceleration acts
a) along the sliding surface
b) perpendicular to the sliding surface
c) at 450 to the sliding surface
d) parallel to the sliding surface

Answer: b
Explanation: perpendicular to the sliding surface

8. The coriolis component of acceleration is taken into account for
a) slider crank mechanism
b) four bar chain mechanism
c) quick return motion mechanism
d) all of the mentioned

Answer: c
Explanation: When a point on one link is sliding along another rotating link, such as in quick return motion mechanism, then the coriolis component of the acceleration must be calculated.

9. The coriolis component of acceleration depends upon
a) velocity of slider
b) angular velocity of the link
c) all of the mentioned
d) none of the mentioned

Answer: c
Explanation: all of the mentioned

10. A body in motion will be subjected to coriolis acceleration when that body is
a) in plane rotation with variable velocity
b) in plane translation with variable velocity
c) in plane motion which is a resultant of plane translation and rotation
d) restrained to rotate while sliding over another body

Answer: d
Explanation: When a point on one link is sliding along another rotating link, such as in quick return motion mechanism, then the coriolis component of the acceleration must be calculated