Thermodynamics Questions and Answers Part-16

1. A cylinder/piston contains carbon dioxide at 300°C, 1 MPa with a volume of 200L. The total external force acting on the piston is proportional to V3. This system is allowed to cool to room temperature, 20°C. Find the work.
a) -24.4 kJ
b) -34.4 kJ
c) -44.4 kJ
d) -54.4 kJ

Answer: a
Explanation: PV^(-3) = constant
State 1: m = P1V1/RT1 = (1000 × 0.2)/(0.18892 × 573.2) = 1.847 kg
P2 = P1(T2/T1)^[n/(n-1)] = 1000(293.2/573.2)^(3/4) = 604.8 kPa
V2 = V1(T1/T2)^[1/(n-1)] = 0.16914 m^3
Work = ⌠ PdV = (P2V2 – P1V1)/(1-n) = [604.8 × 0.16914 – 1000 × 0.2] / [1-(-3)] = -24.4 kJ.

2. A cylinder/piston contains 100L of air at 25°C, 110 kPa. The air is compressed in a reversible polytropic process to a final state of 200°C, 800 kPa. Assume the heat transfer is with the ambient at 25°C. Find the work done by the air.
a) -11.28 kJ
b) -21.28 kJ
c) -31.28 kJ
d) -41.28 kJ

Answer: b
Explanation: m = P1V1 /(RT1) = 110 × 0.1/(0.287 × 298.15) = 0.1286 kg
T2/T1 = (P2/P1)^[(n-1)/n] => 473.15/298.15 = (800/110)^[(n-1)/n] ⇒ (n-1)/n = 0.2328 hence n = 1.3034
V2 = V1(P1/P2)^(1/n) = 0.1(110/800)^(0.7672) = 0.02182 m^3
Work = ⌠PdV = (P2V2 – P1V1)/(1-n) = (800 × 0.02182 – 110 × 0.1)/(1 – 1.3034)
= -21.28 kJ.

3. A mass of 2 kg ethane gas at 100°C, 500 kPa, undergoes a reversible polytropic expansion with n = 1.3, to a final temperature of 20°C. Find the work done.
a) 43.7 kJ/kg
b) 53.7 kJ/kg
c) 63.7 kJ/kg
d) 73.7 kJ/kg

Answer: d
Explanation: P2 = P1(T2/T1)^[n/(n-1)] = 500(293.2/373.2)^(4.333) = 175.8 kPa
Work = ⌠PdV = (P2V2 – P1V1)/(1-n) = R(T2-T1)/(1-n)
= 0.2765(293.2-373.2)/(1-1.30) = 73.7 kJ/kg.

4. A piston/cylinder contains air at 100 kPa, 300 K. A reversible polytropic process with n = 1.3 brings the air to 500 K. Any heat transfer if it comes in is from a 325°C reservoir and if it goes out it is to the ambient at 300 K. Find the specific work.
a) -171.3 kJ/kg
b) -181.3 kJ/kg
c) -191.3 kJ/kg
d) -201.3 kJ/kg

Answer: c
Explanation: Process : Pv^(n) = C
Work = ⌠PdV = (P2V2 – P1V1)/(1-n) = R(T2-T1)/(1-n)
= 0.287 (500 – 300)/(1 – 1.3) = -191.3 kJ/kg.

5. A cylinder/piston contains saturated vapour R-22 at 10°C; the volume is 10 L. The R-22 is compressed to 60°C, 2 MPa in a reversible polytropic process. If all the heat transfer during the process is with the ambient at 10°C, calculate the work done
a) −6.26 kJ
b) −7.26 kJ
c) −8.26 kJ
d) −9.26 kJ

Answer: b
Explanation: State 1: P1 = 0.681 MPa, v1 = 0.03471; m = V1/v1 = 0.01/0.03471 = 0.288 kg
State 2: v2 = 0.01214 m^3/kg; P2/P1 = 2.0/0.681 = (0.03471/0.01214)^(n)
=> n = 1.0255
Work = ⌠PdV = m(P2v2 – P1v1)/(1-n)
= 0.288(2000 × 0.01214 – 681 × 0.03471)/(1 – 1.0255) = −7.26 kJ.

6. The first law of thermodynamics doesn’t tell us whether a thermodynamic process is feasible or not.
a) true
b) false

Answer: a
Explanation: The second law of thermodynamics provides criterion as to the probability of a process.

7. According to Joule’s experiments,
a) heat can be completely converted into work
b) work can be completely converted into heat
c) both heat and work are completely interchangeable
d) all of the mentioned

Answer: b
Explanation: Work transfer -> internal energy increase -> heat transfer.

8. Which of the following is true?
a) work is a high grade energy
b) heat is a low grade energy
c) complete conversion of low grade energy into high grade energy in a cycle is impossible
d) all of the mentioned

Answer: d
Explanation: These facts are in accordance with Joule’s work and underlies the work of Carnot.

9. In a cyclic heat engine there is
a) net heat transfer to the system and net work transfer from the system
b) net heat transfer from the system and net work transfer to the system
c) depends on the conditions of cycle
d) none of the mentioned

Answer: a
Explanation: This is the basic concept of cycle heat engine.

10. Boiler, turbine, condenser and pump together constitute a heat engine.
a) true
b) false

Answer: a
Explanation: It is an example for a cyclic heat engine.