Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

When the sun’s altitude changes from 30° to 60°, the length of the shadow of a tower decreases by 70m. What is the height of the tower?

a) 35 m
b) 140 m
c) 60.6 m
d) 20.2 m

Answer: c
Explanation:
q30

Let AD be the tower, BD be the initial shadow and CD be the final shadow.
Given that BC = 70 m, ∠ ABD = 30°, ∠ ACD = 60°,
Let CD = x, AD = h
$$\eqalign{ & {\text{From}}\,{\text{the}}\,{\text{right}}\,\Delta \,CDA \cr & \tan {60^ \circ } = \frac{{AD}}{{CD}} \cr & \sqrt 3 = \frac{h}{x}\,……\left( {eq:1} \right) \cr & {\text{From}}\,{\text{the}}\,{\text{right}}\,\Delta \,BDA \cr & \tan {30^ \circ } = \frac{{AD}}{{BD}} \cr & \frac{1}{{\sqrt 3 }} = \frac{h}{{70 + x}}\,……\left( {eq:2} \right) \cr & \frac{{eq:1}}{{eq:2}} \Rightarrow \frac{{\sqrt 3 }}{{\left( {\frac{1}{{\sqrt 3 }}} \right)}} = \frac{{\left( {\frac{h}{x}} \right)}}{{\left( {\frac{h}{{70 + x}}} \right)}} \cr & \Rightarrow 3 = \frac{{70 + x}}{x} \cr & \Rightarrow 2x = 70 \cr & \Rightarrow x = 35 \cr} $$
Substituting this value of x in eq : 1, we have
$$\eqalign{ & \sqrt 3 = \frac{h}{{35}} \cr & \Rightarrow h = 35\sqrt 3 = 35 \times 1.73 \cr & = 60.55 \approx 60.6 \cr} $$

Join The Discussion