Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Two trains, each 100 m long, moving in opposite directions, cross each other in 8 seconds. If one is moving twice as fast the other, then the speed of the faster train is:

a) 30 km/hr
b) 45 km/hr
c) 60 km/hr
d) 75 km/hr

Answer: c
Explanation:
$$\eqalign{ & {\text{Let}}\,{\text{the}}\,{\text{speed}}\,{\text{of}}\,{\text{the}}\,{\text{slower}}\,{\text{train}}\,{\text{be}}\,x\,{\text{m/sec}} \cr & {\text{Then,}}\,{\text{speed}}\,{\text{of}}\,{\text{the}}\,{\text{faster}}\,{\text{train}} = 2x\,{\text{m/sec}} \cr & {\text{Relative}}\,{\text{speed}} = \,\left( {x + 2x} \right)\,{\text{m/sec}} = 3x\,{\text{m/sec}} \cr & \frac{{ {100 + 100} }}{8} = 3x \cr & 24x = 200 \cr & x = \frac{{25}}{3} \cr & {\text{So,}}\,{\text{speed}}\,{\text{of}}\,{\text{the}}\,{\text{faster}}\,{\text{train}}\, = \frac{{50}}{3}\,{\text{m/sec}} \cr & = {\frac{{50}}{3} \times \frac{{18}}{5}} \,{\text{km/hr}} \cr & = 60\,{\text{km/hr}} \cr} $$

Join The Discussion