Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Two poles are ‘a’ metres apart and the height of one is double of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the smaller is

a) $$\sqrt {2a} \,{\text{metres}}$$
b) $$\frac{a}{{2\sqrt 2 }}\,{\text{metres}}$$
c) $$\frac{a}{{\sqrt 2 }}\,{\text{metres}}$$
d) $$2a\,{\text{metres}}$$

Answer: b
Explanation: Let height of pole CD = h
and AB = 2h, BD = a
M is mid-point of BD
q38
$$ DM = MB = \frac{a}{2}$$
$${\text{Let }}\angle CMD = \theta ,$$    $${\text{then }}\angle AMB = $$     $${90^ \circ } – \theta $$
$$\eqalign{ & \tan \theta = \frac{{CD}}{{DM}} = \frac{h}{{\frac{a}{2}}} = \frac{{2h}}{a}\,……({\text{i}}) \cr & {\text{and}} \cr & tan\left( {{{90}^ \circ } – \theta } \right) = \frac{{AB}}{{MB}} = \frac{{2h}}{{\frac{a}{2}}} = \frac{{4h}}{a} \cr & \Rightarrow \cot \theta = \frac{{4h}}{a}\,……….({\text{ii}}) \cr & {\text{Multiplying (i) and (ii)}} \cr & {\text{tan}}\theta \times {\text{cot}}\theta = \frac{{2h}}{a} \times \frac{{4h}}{a} \cr & 1 = \frac{{8{h^2}}}{{{a^2}}} = {h^2} = \frac{{{a^2}}}{8}\,m \cr & h = \sqrt {\frac{{{a^2}}}{8}} = \frac{a}{{\sqrt 8 }} = \frac{a}{{2\sqrt 2 }}\,m \cr} $$

Join The Discussion