The derivative of Ax with respect to variable xp is given by __________
a) \(\frac{d}{dx}\)(A x)=xp
b) \(\frac{d}{dx}\)(xp)=A x
c) ∫ A x=xp
d) ∫xp=Ax
Answer: a
Explanation: Let A be an (n x n) matrix of constants and x = [x1 x2 x3…… xn]T be column vector of n variables. Then, (formula) derivative of A x with respect to variable xp is given by
\(\frac{d}{dx}\) (A x)=xp.
Related Posts
In a nine node quadrilateral, the shape functions can be defined as _______
The gauss points for a triangular region differ from the _____ region.
The nodal temperature load can be evaluated by using _____
In six node triangular element, the gauss points of a triangular element can be defined by ____
Six node triangular elements is also known as _____
N1, is of the form ____
A _________ element by using nine-node shape function.
Join The Discussion