Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

In how many ways can the letters of the word ABACUS be rearranged such that the vowels always appear together?

a) $$\frac{{6!}}{2}$$
b) 3! × 3!
c) $$\frac{{4!}}{2}$$
d) $$\frac{{4! \times 3!}}{{2!}}$$

Answer: d
Explanation: ABACUS is a 6 letter word with 3 of the letters being vowels.
If the 3 vowels have to appear together as stated in the question, then there will 3 consonants and a set of 3 vowels grouped together.
One group of 3 vowels and 3 consonants are essentially 4 elements to be rearranged.
The number of possible rearrangements is 4!
The group of 3 vowels contains two a s and one u
The 3 vowels can rearrange amongst themselves in $$\frac{{3!}}{{2!}}$$ ways as the vowel a appears twice.
Hence, the total number of rearrangements in which the vowels appear together are:
$$\frac{{4! \times 3!}}{{2!}}$$

Join The Discussion