Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Find unit digit of product (173)^45 × (152)^77 × (777)^999.

Find unit digit of product (173)45 × (152)77 × (777)999.
a) 4
b) 2
c) 8
d) 6

Answer: c
Explanation : To find unit digit of a number or an Expression, We have to divide the number or expression by 10 and the remainder obtained by this operation would be the required unit digit.
$$\eqalign{ & \frac{{ {{{\left( {173} \right)}^{45}} \times {{\left( {152} \right)}^{77}} \times {{\left( {777} \right)}^{999}}} }}{{10}} \cr & {\text{Remainder}}\,{\text{would}}\,{\text{be}}\,{\text{same}}\,{\text{as}}, \cr & \frac{{ {{3^{45}} \times {2^{77}} \times {7^{999}}} }}{{10}} \cr & \frac{{ {3 \times 2 \times {7^3}} }}{{10}} \cr & \frac{{ {6 \times 343} }}{{10}} \cr & {\text{Remainder}}\,{\text{would}}\,{\text{be}}\,{\text{same}}\,{\text{as}}\,\frac{{ {6 \times 3} }}{{10}} \cr }$$
Required remainder and unit digit will be 8.

Join The Discussion