Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

A sum of money placed at compound interest doubles itself in 4 years. In how many years will it amount to 8 times?

a) 9 years
b) 8 years
c) 27 years
d) 12 years

Answer: d
Explanation:
$$\eqalign{ & {\text{Principal}} = Rs.\,100 \cr & {\text{Amount}} = Rs.\,200 \cr & {\text{Rate}} = r\% \cr & {\text{Time}} = 4\,{\text{years}} \cr & A = P \times {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^n} \cr & 200 = 100 \times {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^4} \cr & 2 = {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^4} – – – – – – \left( i \right) \cr & {\text{If}}\,{\text{sum}}\,{\text{become}}\,{\text{8}}\,{\text{times}}\,{\text{in}}\,{\text{the}}\,{\text{time}}\,n\,{\text{years}} \cr & 8 = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} \cr & {2^3} = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} – – – – – – \left( {ii} \right) \cr & {\text{Using}}\,{\text{eqn}}\,\left( i \right)in\left( {ii} \right),\,{\text{we}}\,{\text{get}} \cr & {\left( {{{\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]}^4}} \right)^3} = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} \cr & {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^{12}} = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} \cr & \,n = 12\,{\text{years}}. \cr} $$

Join The Discussion