Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Find the remainder when 65^(203) is divided by 7.

Find the remainder when 65203 is divided by 7.
a) 4
b) 2
c) 1
d) 6

Answer: c
Explanation:
$$\eqalign{ & \frac{{{{65}^{203}}}}{7} \cr & \frac{{{{\left( {63 + 2} \right)}^{203}}}}{7} \cr & 63\,{\text{is}}\,{\text{divisible}}\,{\text{by}}\,7, \cr & {\text{so}}\,{\text{remainder}}\,{\text{will}}\,{\text{depend}}\,{\text{on}}\,{\text{the}}\,{\text{powers}}\,{\text{of}}\,2 \cr & \frac{{{2^{203}}}}{7} \cr & {\text{Its}}\,{\text{remainder}}\,{\text{would}}\,{\text{be}}\,{\text{same}}\,{\text{as}} \cr & \frac{{{2^3}}}{7} \cr & {\text{Required}}\,{\text{Remainder}}\, \cr & \frac{8}{7} = 1\cr & {\text{Required}}\,{\text{remainder}} = 1 \cr} $$
Note: We have manipulated the powers in the form of (4x + n). It means 203 is taken as,
203 = 4x + n = 4 × 50 + 3.
We neglect power which is in the multiple of 4.

Join The Discussion