a) 360
b) 384
c) 432
d) 470
Answer: b
Explanation: Given there are 12 numbered chairs, such that chairs numbered 1 to 8 should be occupied.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
The various combinations of chairs that ensure that no two men are sitting together are listed.
(1, 3, 5, __ ), The fourth chair can be 5,6,10,11 or 12, hence 5 ways.
(1, 4, 8, __ ), The fourth chair can be 6,10,11 or 12 hence 4 ways.
(1, 5, 8, __ ), the fourth chair can be 10,11 or 12 hence 3 ways.
(1, 6, 8, __ ), the fourth chair can be 10,11 or 12 hence 3 ways.
(1, 8, 10, 12) is also one of the combinations.
Hence, 16 such combinations exist.
In case of each these combinations we can make the four men inter arrange in 4! ways.
Hence, the required result =16 × 4! = 384
Related Posts
How many alphabets need to be there in a language if one were to make 1 million distinct 3 digit initials using the alphabets of the language ?
A committee is to be formed comprising 7 members such that there is a simple majority of men and at least 1 woman. The shortlist consists of 9 men and 6 women. In how many ways can this committee be formed?
A tea expert claims that he can easily find out whether milk or tea leaves were added first to water just by tasting the cup of tea. In order to check this claims 10 cups of tea are prepared, 5 in one way and 5 in other. Find the different possible ways of presenting these 10 cups to the expert.
A team of 8 students goes on an excursion, in two cars, of which one can seat 5 and the other only 4. In how many ways can they travel?
In how many ways can the letters of the word EDUCATION be rearranged so that the relative position of the vowels and consonants remain the same as in the word EDUCATION?
Ten different letters of alphabet are given, words with 5 letters are formed from these given letters. Then, the number of words which have at least one letter repeated is:
If 5×nP3 = 4×(n+1)P3,find n?
Join The Discussion