Compound Interest Questions and Answers





1. A sum becomes Rs.1352 in 2 years at 4% per annum compound interest. The sum is =
a) Rs. 1270
b) Rs. 1225
c) Rs. 1245
d) Rs. 1250

  Discussion

Answer: d
Explanation: Let the sum be Rs. x
$$\eqalign{ & \therefore 1352 = x{\left( {1 + \frac{4}{{100}}} \right)^2} \cr & \Rightarrow 1352 = x{\left( {1 + \frac{1}{{25}}} \right)^2} \cr & \Rightarrow 1352 = x{\left( {\frac{{26}}{{25}}} \right)^2} \cr & \Rightarrow x = \frac{{1352 \times 25 \times 25}}{{26 \times 26}} \cr & \Rightarrow x = {\text{Rs}}{\text{.}}\,1250 \cr} $$

2. What will be the compound interest accrued on an amount of Rs.10000 @ 20 p.c.p.a in 2 years if the interest is compounded half-yearly?
a) Rs. 4600
b) Rs. 4641
c) Rs. 4400
d) Rs. 4680

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{P = Rs}}.10000, \cr & {\text{R}} = 20\% \,p.a. \cr & \,\,\,\,\,\,\, = 10\% \,{\text{per}}\,{\text{half year}} \cr & T = 2\,{\text{years}} = 4\,{\text{half}}\,{\text{years}} \cr & {\text{Amount}} \cr & {\text{ = Rs}}.\left[ {10000 \times {{\left( {1 + \frac{{10}}{{100}}} \right)}^4}} \right] \cr & = {\text{Rs}}.\left( {10000 \times \frac{{11}}{{10}} \times \frac{{11}}{{10}} \times \frac{{11}}{{10}} \times \frac{{11}}{{10}}} \right) \cr & = {\text{Rs}}.14641 \cr & \therefore {\text{C}}{\text{.I}}{\text{. = Rs}}.\left( {14641 - 10000} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}.\,4641 \cr} $$

3. A sum of money on compound interest amounts to Rs. 10648 in 3 years and Rs. 9680 in 2 years. The rate of interest per annum is = ?
a) 15%
b) 10%
c) 20%
d) 5%

  Discussion

Answer: b
Explanation: Let the sum be Rs. P and rate of interest be R% per annum. Then,
$$\eqalign{ & P{\left( {1 + \frac{R}{{100}}} \right)^2} = 9680\,.....\,\left( 1 \right) \cr & P{\left( {1 + \frac{R}{{100}}} \right)^3} = 10648\,.....\,\left( 2 \right) \cr} $$
On dividing equation (2) by (1) :
$$\eqalign{ & 1 + \frac{R}{{100}} = \frac{{10648}}{{9680}} \cr & \Rightarrow \frac{R}{{100}} = \frac{{10648}}{{9680}} - 1 \cr & \Rightarrow \frac{R}{{100}} = \frac{{10648 - 9680}}{{9680}} \cr & \Rightarrow \frac{R}{{100}} = \frac{{968}}{{9680}} \cr & \Rightarrow \frac{R}{{100}} = \frac{1}{{10}} \cr & \Rightarrow R = \frac{1}{{10}} \times 100 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 10\% \cr} $$

4. The principal which will amounts to Rs. 270.40 in 2 years at the rate of 4% per annum compound interest, is = ?
a) Rs. 250
b) Rs. 225
c) Rs. 200
d) Rs. 220

  Discussion

Answer: a
Explanation:
$$\eqalign{ & 4\% = \frac{1}{{25}} \cr & \,\,\,\,\,\,\,\,\, = \frac{{26 \to {\text{Amount}}}}{{25 \to {\text{Principal}}}} \cr & {\text{Time = 2 years}} \cr & {\text{Principal}}\,\,\,\,\,{\text{Amount}} \cr & \,\,\,\,\,\,\,\,\,{\text{25}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{26}} \cr & \,\,\,\,\,\,\,\,\,{\text{25}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{26}} \cr & \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \cr & \,\,\,\,\,\,\,\,625\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,676 \cr & \,\,\,\, \downarrow \times 0.4\,\,\,\,\,\, \downarrow \times 0.4 \cr & \,\,\,\,\,\,\,\,\,250\,\,\,\,\,\,\,\,\,\,\,\,270.40 \cr & {\text{Hence required principal}} \cr & {\text{ = Rs.250}} \cr} $$

5. The compound interest on a certain sum of money at a certain rate for 2 years is Rs. 40.80 and the simple interest on the same sum is Rs. 40 at the same rate and for the same time. The rate of interest is = ?
a) 5% per annum
b) 3% per annum
c) 4% per annum
d) 2% per annum

  Discussion

Answer: c
Explanation: Difference in CI and SI for 2 years
$$\eqalign{ & = \left( {40.80 - 40} \right) \cr & = {\text{Rs 0}}{\text{.80}} \cr & {\text{SI for first year }} \cr & {\text{ = }}\frac{{40}}{2} = {\text{Rs}}{\text{.}}\,20 \cr & {\text{Required Rate }}\% \cr & {\text{ = }}\frac{{0.80}}{{20}} \times 100 = 4\% \cr} $$

6. In how many years will Rs. 2000 amounts to Rs. 2420 at 10% per annum compound interest?
a) 3 years
b) $$2\frac{1}{2}$$ years
c) $$1\frac{1}{2}$$ years
d) 2 years

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Principal = Rs. 2000}} \cr & {\text{Amount = Rs. 2420}} \cr & {\text{Rate = 10% }} \cr & {\text{By using formula,}} \cr & \Rightarrow 2420 = 2000{\left( {1 + \frac{{10}}{{100}}} \right)^n} \cr & \Rightarrow \frac{{2420}}{{2000}} = {\left( {1 + \frac{{10}}{{100}}} \right)^n} \cr & \Rightarrow \frac{{121}}{{100}} = {\left( {\frac{{11}}{{10}}} \right)^n} \cr & \Rightarrow {\left( {\frac{{11}}{{10}}} \right)^2} = {\left( {\frac{{11}}{{10}}} \right)^n} \cr & \Rightarrow n = 2 \cr & {\text{Hence,}} \cr & {\text{required time = 2 years}} \cr} $$

7. The compound interest on Rs.2800 for 18 months at 10% p.a is = ?
a) Rs. 441.35
b) Rs. 436.75
c) Rs. 434
d) Rs. 420

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Given,}}\,{\text{Principal}},\,P = Rs.\,2800 \cr & {\text{Compound}}\,{\text{rate}},\,R = 10\% \,{\text{per}}\,{\text{annum}} \cr & = \frac{{10}}{2} = 5\% \,{\text{half - yearly}} \cr & {\text{Amount}} \cr & = {\text{Rs}}{\text{.}}\left[ {2800 \times \left( {1 + \frac{{10}}{{100}}} \right)\left( {1 + \frac{{5}}{{100}}} \right)} \right] \cr & = {\text{Rs.}}\left( {2800 \times \frac{{11}}{{10}} \times \frac{{21}}{{20}}} \right) \cr & = {\text{Rs. }}3234 \cr & \therefore {\text{C}}{\text{.I}}{\text{. = Rs.}}\left( {3234 - 2800} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs. }}434 \cr} $$

8. If the rate of interest be 4% per annum for first year, 5% per annum for second year and 6% per annum for third year, then the compound interest of Rs.10000 for three years will be ?
a) Rs. 1575.20
b) Rs. 1625.80
c) Rs. 1600
d) Rs. 2000

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{ = Rs}}.10000\left[ {\left( {1 + \frac{4}{{100}}} \right)\left( {1 + \frac{5}{{100}}} \right)\left( {1 + \frac{6}{{100}}} \right)} \right] \cr & = {\text{Rs}}.\left( {10000 \times \frac{{26}}{{25}} \times \frac{{21}}{{20}} \times \frac{{53}}{{50}}} \right) \cr & = {\text{Rs}}.\left( {\frac{{57876}}{5}} \right) = {\text{Rs}}.11575.20 \cr & {\text{C}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left( {11575.20 - 10000} \right) \cr & \,\,\,\,\,\,\,\,\, = {\text{Rs}}.1575.20 \cr} $$

9. A bank offers 5% compound interest calculated on half yearly basis. A customer deposits Rs.1600 each on 1st January and 1st July of a year. At the end of the year, the amount he would have gained by way of interest is = ?
a) Rs. 120
b) Rs. 121
c) Rs. 122
d) Rs. 123

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{ = Rs}}.\left[ {1600 \times {{\left( {1 + \frac{5}{{2 \times 100}}} \right)}^2} + 1600 \times \left( {1 + \frac{5}{{2 \times 100}}} \right)} \right] \cr & {\text{ = Rs}}.\left[ {1600 \times \frac{{41}}{{40}} \times \frac{{41}}{{40}} + 1600 \times \frac{{41}}{{40}}} \right] \cr & {\text{ = Rs}}.\left[ {1600 \times \frac{{41}}{{40}}\left( {\frac{{41}}{{40}} + 1} \right)} \right] \cr & {\text{ = Rs}}.\left( {\frac{{1600 \times 41 \times 81}}{{40 \times 40}}} \right) \cr & {\text{ = Rs}}.\,3321 \cr & \therefore {\text{C}}{\text{.I}}{\text{. = Rs}}.\left( {3321 - 3200} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}.\,121 \cr} $$

10. The compound interest on Rs 16000 for 9 months at 20% per annum, interest being compounded quarterly, is = ?
a) Rs. 2520
b) Rs. 2518
c) Rs. 2522
d) Rs. 2524

  Discussion

Answer: c
Explanation:
The interest is compounded quarterly,
$$\therefore R = \frac{{20}}{4} = 5\% $$
Time = 3 quarters
$$\eqalign{ & \therefore C.I. = P\left[ {{{\left( {1 + \frac{R}{{100}}} \right)}^T} - 1} \right] \cr & = 16000\left[ {{{\left( {1 + \frac{5}{{100}}} \right)}^3} - 1} \right] \cr & = 16000\left[ {{{\left( {\frac{{21}}{{20}}} \right)}^3} - 1} \right] \cr & = 16000\left( {\frac{{9261 - 8000}}{{8000}}} \right) \cr & = 16000 \times \frac{{1261}}{{8000}} \cr & = {\text{Rs}}{\text{.}}\,\,2522 \cr} $$

11. A sum of money invested at compound interest amounts to Rs. 650 at the end of first year and Rs. 676 at the end of second year. The sum of money is =
a) Rs. 540
b) Rs. 560
c) Rs. 625
d) Rs. 600

  Discussion

Answer: c
Explanation: Interest on 650 for one year = 676 - 650 = 26
$$\eqalign{ & 26 = \frac{{650 \times r \times 1}}{{100}} \cr & r = 4\% \cr & 650 = P\left[ {1 + \frac{4}{{100}}} \right] \cr & \Rightarrow 650 = P \times \frac{{26}}{{25}} \cr & \Rightarrow p = \frac{{650 \times 25}}{{26}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{.}}\,625 \cr} $$

12. On a certain sum of money the compound interest for 2 years is Rs. 282.15 and the simple interest for the same period of time is Rs. 270. The rate of interest per annum is =
a) 6.07%
b) 9%
c) 10%
d) 12.15%

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{CI for 2 years}}\,{\text{ = Rs. 282}}{\text{.15}} \cr & {\text{SI for 2 year}}\,{\text{ = Rs. 270}} \cr & {\text{SI for 1 year = }}\frac{{270}}{2} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs.}}\,135 \cr & {\text{Difference between CI and SI}} \cr & {\text{ = }}\left( {282.15 - 270} \right) \cr & {\text{ = Rs. 12}}{\text{.15}} \cr & {\text{Required rate % }} \cr & {\text{ = }}\frac{{12.15}}{{135}} \times 100 = 9\% \cr} $$

13. If the difference between the compound interest and simple interest on a sum of 5% rate of interest per annum for three years is Rs. 36.60, then the sum is = ?
a) Rs. 8000
b) Rs. 4400
c) Rs. 8400
d) Rs. 4800

  Discussion

Answer: d
Explanation:
Rate % = 5%
Effective Rate of CI for 3 years = 15.7625%
Effective Rate of SI for 3 years = 5 × 3 = 15%
According to the question
$$\eqalign{ & \left( {15.7625 - 15} \right)\% \,{\text{of sum}} {\text{ = Rs. 36}}{\text{.60}} \cr & {\text{0}}{\text{.7625% of sum}} {\text{ = Rs. 36}}{\text{.60}} \cr & {\text{Sum = }}\frac{{36.60}}{{0.7625}} \times 100 \cr & \,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs. }}4800 \cr} $$

14. Compound interest on a sum of money for 2 years at 4% per annum is Rs. 2448. simple interest on the same sum of money at the same rate of interest for 2 years will be = ?
a) Rs. 2360
b) Rs. 2400
c) Rs. 2250
d) Rs. 2500

  Discussion

Answer: b
Explanation:
Time (t) = 2 years
Rate % = 4%
Effective rate of CI of 2 years
$$\eqalign{ & {\text{ = 4 + 4 + }}\frac{{4 \times 4}}{{100}} \cr & = 8.16\% \cr} $$
Effective Rate of SI for 2 years = 8%
According to the question
$$\eqalign{ & {\text{8}}{\text{.16% of sum}} \cr & {\text{ = Rs. 2448}} \cr & {\text{1% of sum}} \cr & {\text{ = Rs. }}\frac{{2448}}{{8.16}} \cr & {\text{8% of sum}} \cr & {\text{ = }}\frac{{2448}}{{8.16}} \times {\text{8}} \cr & {\text{ = Rs. 2400 }} \cr} $$

15. A man gets a simple interest on Rs. 1000 on a certain principal at the rate of 5 p.c.p.a. in 4 years. What compound interest will the man get on twice the principal in 2 years at the same rate ?
a) Rs. 1005
b) Rs. 1000
c) Rs. 10125
d) None of the above

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Principal}} \cr & {\text{ = Rs}}{\text{.}}\left( {\frac{{100 \times 1000}}{{5 \times 4}}} \right) \cr & = {\text{Rs}}{\text{. 5}}000 \cr & {\text{Now, P = Rs}}{\text{.}}\,10000, \cr & {\text{T = 2 years,}} \cr & {\text{R = 5% }} \cr & {\text{Amount}} \cr & {\text{ = Rs}}{\text{.}}\left[ {10000 \times {{\left( {1 + \frac{5}{{100}}} \right)}^2}} \right] \cr & = {\text{Rs}}{\text{.}}\left( {10000 \times \frac{{21}}{{20}} \times \frac{{21}}{{20}}} \right) \cr & = {\text{Rs}}. 11025 \cr & \therefore {\text{C}}{\text{.I}}{\text{. = }}\left( {11025 - 10000} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}. 1025 \cr} $$

16. Mr. Duggal invested Rs. 20000 with rate of interest @ 20 p.c.p.a. The interest was compounded half-yearly for first one year and in the next year it was compounded yearly. What will be the total interest earned at the end of 2 year ?
a) Rs. 9040
b) Rs. 8800
c) Rs. 9800
d) Rs. 8040

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Amount}} \cr & {\text{ = Rs}}.\left[ {20000{{\left( {1 + \frac{{10}}{{100}}} \right)}^2}\left( {1 + \frac{{20}}{{100}}} \right)} \right] \cr & = {\text{Rs}}.\left( {20000 \times \frac{{11}}{{10}} \times \frac{{11}}{{10}} \times \frac{6}{5}} \right) \cr & = {\text{Rs}}.29040 \cr & {\text{C}}{\text{.I}}{\text{. = Rs}}.\left( {29040 - 20000} \right) \cr & \,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}. 9040 \cr} $$

17. A sum of money doubles itself in 4 years compound interest. It will amount to 8 times itself at the same rate of interest in = ?
a) 24 years
b) 16 years
c) 12 years
d) 18 years

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Let Principal = P}} \cr & {\text{Rate = R% }} \cr & {\text{T = 4 years}} \cr & \therefore {\text{Amount = 2P}} \cr & {\text{Case (I) 2P = P}}{\left( {1 + \frac{R}{{100}}} \right)^4} \cr & 2 = {\left( {1 + \frac{R}{{100}}} \right)^4}.....(i) \cr & {\text{Case (II) Let after t years it will be 8 times}} \cr & {\text{8P = P}}{\left( {1 + \frac{R}{{100}}} \right)^t} \cr & {\left( 2 \right)^3} = {\left( {1 + \frac{R}{{100}}} \right)^t}.....(ii) \cr & {\text{By using equation (i) & equation (ii)}} \cr & {\left( {1 + \frac{R}{{100}}} \right)^{12}} = {\left( {1 + \frac{R}{{100}}} \right)^t} \cr & {\text{By comparing both sides,}} \cr & {\text{t = 12 years}} \cr} $$

18. If the compound interest on a sum of money for 3 years at the rate of 5% per annum is Rs. 252.20, the simple interest on the same sum at the same rate and for the same time is ?
a) Rs. 240
b) Rs. 245
c) Rs. 220
d) Rs. 250

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Rate = 5% }} \cr & {\text{Time = 3 years}} \cr & {\text{Compound Interest Rs. 252}}{\text{.20}} \cr & {\text{Effective rate% of CI for 3 years}} \cr & {\text{ = 15}}{\text{.7625% }} \cr & {\text{Effective rate% of SI for 3 years}} \cr & {\text{ = 5}} \times {\text{3 = 15% }} \cr & {\text{Required SI }} \cr & {\text{ = }}\frac{{252.20}}{{15.7625}} \times 15 \cr & = 240 \cr} $$

19. The difference between simple interest and compound interest on Rs. P at R% p.a in 2 years is = ?
a) $${\text{Rs}}{\text{.}}\,\frac{{P{R^2}}}{{100}}$$
b) $${\text{Rs}}{\text{.}}\,\frac{{2PR}}{{100}}$$
c) $${\text{Rs}}{\text{.}}\,\frac{{PR}}{{100}}$$
d) $${\text{Rs}}{\text{.}}\,\frac{{P{R^2}}}{{{{\left( {100} \right)}^2}}}$$

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{S}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left( {\frac{{P \times R \times 2}}{{100}}} \right) \cr & \,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{.}}\left( {\frac{{2PR}}{{100}}} \right) \cr & {\text{C}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left[ {P \times {{\left( {1 + \frac{R}{{100}}} \right)}^2} - P} \right] \cr & \,\,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{.}}\left[ {\frac{{P{R^2}}}{{{{\left( {100} \right)}^2}}} + \frac{{2PR}}{{100}}} \right] \cr & \therefore {\text{Difference}} \cr & {\text{ = Rs}}{\text{.}}\left[ {\left\{ {\frac{{P{R^2}}}{{{{\left( {100} \right)}^2}}} + \frac{{2PR}}{{100}}} \right\} - \frac{{2PR}}{{100}}} \right] \cr & = {\text{Rs}}{\text{.}}\left[ {\frac{{P{R^2}}}{{{{\left( {100} \right)}^2}}}} \right] \cr} $$

20. What would be the compound interest accrued on an amount of Rs. 8400 @ 12.5 p.c.p.a at the end of 3 years ?
a) Rs. 2584.16
b) Rs. 3820.14
c) Rs. 3560.16
d) Rs. 4205.62

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Amount}} \cr & {\text{ = Rs}}{\text{.}}\left[ {8400 \times {{\left( {1 + \frac{{25}}{{2 \times 100}}} \right)}^3}} \right] \cr & = {\text{Rs}}{\text{.}}\left( {8400 \times \frac{9}{8} \times \frac{9}{8} \times \frac{9}{8}} \right) \cr & = {\text{Rs}}{\text{.}}\left( {\frac{{382725}}{{32}}} \right) \cr & = {\text{Rs}}.11960.156 \approx {\text{Rs}}.11960.16 \cr & {\text{C}}{\text{.I}}{\text{.}} = {\text{Rs}}{\text{.}}\left( {11960.16 - 8400} \right) \cr & = {\text{Rs}}{\text{.}}\,3560.16 \cr} $$

21. What does Rs. 250 amounts to in 2 years with compound interest at the rate of 4% in the 1st year and 8% in the second year ?
a) Rs. 280
b) Rs. 280.80
c) Rs. 468
d) Rs. 290.80

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Principal = Rs 250}} \cr & {{\text{R}}_1} = 4\% ,\,\,\,\,\,\,\,\,\,{{\text{R}}_2} = 8\% \cr & {\text{Amount}}\,{\text{after}}{1^{st}}\,{\text{year}} \cr & = 250\left( {1 + \frac{4}{{100}}} \right) = {\text{Rs}}{\text{. }}260 \cr & {\text{Amount after }}{{\text{2}}^{{\text{nd}}}}{\text{ year}} \cr & {\text{ = }}260\left( {1 + \frac{8}{{100}}} \right) \cr & = {\text{Rs}}{\text{. }}280.80 \cr} $$

22. The compound interest on a certain sum of money for 2 years at 5% is Rs. 328, then the sum is =
a) Rs. 3000
b) Rs. 3600
c) Rs. 3200
d) Rs. 3400

  Discussion

Answer: c
Explanation: Go check with option one by one (Go with option (C) and check it.)
Principal is Rs. 3200
3200 of 5% for 1st year = 160
then, principal = 3200 + 160 = 3360
3360 of 5% for 2nd year = 168
Interest = 160 + 168 = 328

23. The compound interest on a certain sum of money for 2 years at 5% per annum is Rs 410. The simple interest on the same sum at the same rate and for the same time is =
a) Rs. 400
b) Rs. 300
c) Rs. 350
d) Rs. 405

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Rate of interest 5}}\% \cr & = \frac{1}{{20}} \cr & {\text{Let principal}} \cr & {\text{ = }}{\left( {20} \right)^2}{\text{ = 400 units}} \cr & \Rightarrow {\text{ Total compound interest }} \cr & {\text{41 Units }} \to {\text{Rs. 410 }} \cr & {\text{1 Units }} \to {\text{Rs. 10 }} \cr & {\text{400 Units }} \to {\text{Rs. 400 }} \cr & {\text{Total simple interest}} \cr & {\text{ = Rs. 400}} \cr} $$

24. A sum of money lent out at compound interest increases in value by 50% in 5 years. A person wants to lend three different sums x, y and z for 10, 15 and 20 years respectively at the above rate in such a way that he gets back equal sums at the end of their respective periods. The ratio x : y : z is =
a) 6 : 9 : 4
b) 9 : 4 : 6
c) 9 : 6 : 4
d) 6 : 4 : 9

  Discussion

Answer: c
Explanation:
$$\eqalign{ & P{\left( {1 + \frac{R}{{100}}} \right)^5} = 150\% \,{\text{of }}P = \frac{3}{2}P \cr & \Rightarrow {\left( {1 + \frac{R}{{100}}} \right)^5} = \frac{3}{2} \cr} $$
  $$x{\left( {1 + \frac{R}{{100}}} \right)^{10}} = y{\left( {1 + \frac{R}{{100}}} \right)^{15}} = $$       $$z{\left( {1 + \frac{R}{{100}}} \right)^{20}}$$
  $$ \Rightarrow x{\left\{ {{{\left( {1 + \frac{R}{{100}}} \right)}^5}} \right\}^2} = $$      $$y{\left\{ {{{\left( {1 + \frac{R}{{100}}} \right)}^5}} \right\}^3} = $$     $$z{\left\{ {{{\left( {1 + \frac{R}{{100}}} \right)}^5}} \right\}^4}$$
$$\eqalign{ & \Rightarrow x \times {\left( {\frac{3}{2}} \right)^2} = y \times {\left( {\frac{3}{2}} \right)^3} = z \times {\left( {\frac{3}{2}} \right)^4} \cr & \Rightarrow \frac{{9x}}{4} = \frac{{27y}}{8} = \frac{{81z}}{{16}} = k({\text{say}}) \cr & \Rightarrow x = \frac{{4k}}{9},y = \frac{{8k}}{{27}},z = \frac{{16k}}{{81}} \cr & x:y:z = \frac{{4k}}{9}:\frac{{8k}}{{27}}:\frac{{16k}}{{81}} \cr & x:y:z = 36:24:16 \cr & x:y:z = 9:6:4 \cr} $$

25. Under the Rural Housing Scheme, the Delhi Development Authority (DDA) allotted a house to Kamal Raj for Rs. 126100. This payment is to be made in three equal annual instalments. If the money is reckoned at 5% per annum compound interest, then how much is to be paid by Kamal Raj in each instalment ?
a) Rs. 45205
b) Rs. 46305
c) Rs. 47405
d) Rs. 48505

  Discussion

Answer: b
Explanation: Let the value of each instalment be Rs. x
Then, (P.W. of Rs. x due 1 year hence) + (P.W. of Rs. x due 2 year hence) + (P.W. of Rs. x due 3 year hence) = 126100
$$\eqalign{ & \frac{x}{{\left( {1 + \frac{5}{{100}}} \right)}} + \frac{x}{{{{\left( {1 + \frac{5}{{100}}} \right)}^2}}} + \frac{x}{{{{\left( {1 + \frac{5}{{100}}} \right)}^3}}} = 126100 \cr & \frac{{20x}}{{21}} + \frac{{400x}}{{441}} + \frac{{8000x}}{{9261}} = 126100 \cr & \frac{{8820x + 8400x + 8000x}}{{9261}} = 126100 \cr & \frac{{25220x}}{{9261}} = 126100 \cr & x = \left( {\frac{{126100 \times 9261}}{{25220}}} \right) \cr & x = 46305 \cr} $$

26. A sum of Rs 210 was taken as a loan. This is to be paid back in two equal installments. If the rate of interest be 10% compounded annually, then the value of each installment is = ?
a) Rs. 127
b) Rs. 121
c) Rs. 210
d) Rs. 225

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Rate of interest}} \Rightarrow {\text{ 10% = }}\frac{1}{{10}} \cr & {\text{Each installment of 2 years}} \cr & \frac{{10}}{{11}} \times \frac{{\left( {10 + 11} \right)}}{{11}} \times {\text{ Installment = P}}{\text{.A}} \cr & \frac{{10}}{{11}} \times \frac{{\left( {10 + 11} \right)}}{{11}} \times {\text{ Installment = 210}} \cr & {\text{Installment = 121}} \cr} $$

27. A certain sum will amount to Rs 12100 in 2 years at 10% per annum of compound interest, interest being compounded annually. The sum is = ?
a) Rs. 12000
b) Rs. 6000
c) Rs. 8000
d) Rs. 10000

  Discussion

Answer: d
Explanation: Amount = 12,100; r = 10%, t = 2 yrs
$$\eqalign{ & {\text{Amount}} = P{\left[ {1 + \frac{r}{{100}}} \right]^t} \cr & 12100 = P{\left[ {1 + \frac{{10}}{{100}}} \right]^2} \cr & 12100 = P{\left[ {\frac{{11}}{{10}}} \right]^2} \cr & 12100 = P \times \frac{{11}}{{10}} \times \frac{{11}}{{10}} \cr & P = \frac{{12100 \times 10 \times 10}}{{11 \times 11}} \cr & P = 10000 \cr} $$

28. Find the rate percent per annum if Rs. 2000 amounts to Rs. 2315.25 in one and half years interest being compounded half yearly.
a) 10 %
b) 11.5 %
c) 5 %
d) 20 %

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{compounded half yearly}} \cr & {\text{Rate = }}\frac{{\text{R}}}{2} \cr & {\text{Time = }}\frac{{{\text{2T}}}}{3} \cr & {\text{Amount = P}}{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr & 2315.25 = 2000{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr & \frac{{2315.25}}{{2000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr & \frac{{231525}}{{200000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr & \frac{{9261}}{{8000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr & {\left( {\frac{{21}}{{20}}} \right)^3} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr & 1 + \frac{{\text{R}}}{{200}} = \frac{{21}}{{20}} \cr & {\text{R = 10}}\% \cr} $$

29. One can purchase a flat from a house building society for Rs. 55000 cash or on the terms that he should pay Rs. 4275 as cash down payment and get the rest in three equal installments. The society charges interest at the rate of 16% per annum compounded half-yearly. If the flat is purchased under installment plan, find the value of each installment ?
a) Rs. 18756
b) Rs. 19292
c) Rs. 19683
d) Rs. 20285

  Discussion

Answer: c
Explanation: Total cost of the flat = Rs. 55000
Down payment = Rs. 4275
Balance = Rs. (55000 - 4275) = Rs. 50725
Rate of interest = 8% per half year
Let the value of each instalment be Rs. x
P.W. of Rs. x due 6 months hence + P.W. of Rs. x due 1 year hence + P.W. of Rs. x due $$1\frac{1}{2}$$ years hence = 50725
  $$ \frac{x}{{\left( {1 + \frac{8}{{100}}} \right)}} + $$    $$\frac{x}{{{{\left( {1 + \frac{8}{{100}}} \right)}^2}}} + $$   $$\frac{x}{{{{\left( {1 + \frac{8}{{100}}} \right)}^3}}} = $$    $$50725$$
$$\eqalign{ & \frac{{25x}}{{27}} + \frac{{625x}}{{729}} + \frac{{15625x}}{{19683}} = 50725 \cr & \frac{{50725x}}{{19683}} = 50725 \cr & x = \left( {\frac{{50725 \times 19683}}{{50725}}} \right) = 19683 \cr} $$

30. The sum of money which when given on compound interest at 18% per annum would fetch Rs 960 more when the interest is payable half-yearly then when it was payable annually for 2 years is =
a) Rs. 60000
b) Rs. 30000
c) Rs. 40000
d) Rs. 50000

  Discussion

Answer: d
Explanation: Rate of interest = 18%
Time = 2 year
When the interest is payable half yearly
Then, rate of interest = 9%
Time = 4 half - years
Let the principal be Rs. x
$$\eqalign{ & {\text{C}}{\text{.I}}{\text{. = }}x\left[ {{{\left( {1 + \frac{R}{{100}}} \right)}^T} - 1} \right]{\text{ }} \cr & = x\left[ {{{\left( {1 + \frac{9}{{100}}} \right)}^4} - 1} \right] \cr & = x\left[ {{{\left( {\frac{{109}}{{100}}} \right)}^4} - 1} \right] \cr & = x\left[ {1.4116 - 1} \right] \cr & = Rs.\,0.4116x \cr & {\text{According to question}} \cr & = x\left[ {{{\left( {1 + \frac{{18}}{{100}}} \right)}^2} - 1} \right] \cr & = x\left[ {{{\left( {\frac{{118}}{{100}}} \right)}^2} - 1} \right] \cr & = x\left[ {{{\left( {1.18} \right)}^2} - 1} \right] \cr & = x\left[ {1.3924 - 1} \right] \cr & = Rs.\,0.3924x \cr & {\text{According to question,}} \cr & 0.4116x - 0.3924x = 960 \cr & x = \frac{{960}}{{0.0192}} \cr & x = \frac{{960 \times 10000}}{{192}} \cr & x = 50000 \cr} $$

31. The difference between compound interest and simple interest on a certain sum of money for 2 years at 5% per annum is Rs. 41. What is the sum of money ?
a) Rs. 7200
b) Rs. 9600
c) Rs. 16400
d) Rs. 8400

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{C}}{\text{.I}}{\text{.}} - {\text{S}}{\text{.I}}{\text{.}} = 41 \cr & {\text{C}}{\text{.I}}{\text{.}} - {\text{S}}{\text{.I}}{\text{.}} = P{\left( {\frac{r}{{100}}} \right)^2} \cr & 41 = P\left( {\frac{{25}}{{10000}}} \right) \cr & P = 16400 \cr} $$

32. The compound interest on a certain sum for 2 years at 10% per annum is Rs. 525. The simple interest on the same sum for double the time at half the rate percent per annum is = ?
a) Rs. 520
b) Rs. 550
c) Rs. 500
d) Rs. 515

  Discussion

Answer: c
Explanation:
$$\eqalign{ & 10\% = \frac{1}{{10}} \cr & {\text{Let P}} = {\text{ }}{\left( {10} \right)^2} = 100 \cr & {\text{Total CI = 21 unit = 525}} \cr & {\text{1 unit = 25}} \cr & {\text{P}} = {\text{ 100 unit }} \cr & {\text{ = 100}} \times {\text{25}} = {\text{2500}} \cr & {\text{New Time = 4 years}} \cr & {\text{and new rate = 5}}\% \cr & {\text{SI = }}\frac{{2500 \times 4 \times 5}}{{100}}{\text{ }} \cr & {\text{SI = Rs. 500}} \cr} $$

33. Shashi had a certain amount of money. He invested $$\frac{2}{3}$$ of the total money in scheme A for 6 years and rest of the money he invested in scheme B for 2 years. Scheme A offers simple interest at a rate of 12% p.a. and scheme B offers compound interest ( compound annually) at a rate of 10% p.a. If the total interest obtained from both the schemes is Rs. 2750. What was the total amount invested by him in scheme A and scheme B together ? (Approximate value)
a) Rs. 4500
b) Rs. 4200
c) Rs. 4050
d) Rs. 5000

  Discussion

Answer: d
Explanation: Let the total sum of money invested by Shashi be Rs. x
In scheme A money invested at simple interest for 6 years at a rate of 12% p.a.
$$ \frac{2}{3}{\text{of }}x \times \frac{{12 \times 6}}{{100}} = \frac{{48x}}{{100}}....(i)$$
In scheme B money at compound interest for 2 year at a rate of 10% p.a.
$$\eqalign{ & \frac{x}{3}{\left( {1 + \frac{{10}}{{100}}} \right)^2} - \frac{x}{3} \cr & \Rightarrow \frac{x}{3}{\left( {1 + \frac{{10}}{{100}}} \right)^2} - \frac{x}{3} = \frac{{7x}}{{100}} \cr} $$
According to given information,
$$\eqalign{ & \frac{{48x}}{{100}} + \frac{{7x}}{{100}} = 2750 \cr & 55x = 2750 \times 100 \cr & x = \frac{{2750 \times 100}}{{55}} \cr & x = Rs.\,5000 \cr} $$

34. The difference between CI and SI on a certain sum of money for 3 years at 5% p.a. is Rs. 122. Find the sum invested ?
a) Rs. 10000
b) Rs. 12000
c) Rs. 16000
d) Rs. 20000

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Rate of interest = 5}}\% {\text{ p}}{\text{.c}}{\text{.p}}{\text{.a}}{\text{.}} \cr & {\text{If time 3 years than CI}} - {\text{SI}} \cr & {\text{ = }}P\left[ {{{\left( {\frac{R}{{100}}} \right)}^3} + 3{{\left( {\frac{R}{{100}}} \right)}^2}} \right] \cr & \Rightarrow 122 = P\left[ {{{\left( {\frac{5}{{100}}} \right)}^3} + 3{{\left( {\frac{5}{{100}}} \right)}^2}} \right] \cr & \Rightarrow 122 = P\left( {\frac{{125}}{{1000000}} + \frac{{75}}{{10000}}} \right) \cr & 122 = P\left[ {\frac{{125 + 7500}}{{1000000}}} \right] \cr & 122 = P\left[ {\frac{{7525}}{{1000000}}} \right] \cr & P = \frac{{122 \times 1000000}}{{7625}} \cr & P = {\text{Rs}}{\text{. 16000}} \cr} $$

35. A man invested a sum of money at compound interest. It amounted to Rs. 2420 in 2 years and to Rs. 2662 in 3 years. Find the sum ?
a) Rs. 1000
b) Rs. 2000
c) Rs. 5082
d) Rs. 3000

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{R}}\% {\text{ = }}\frac{{2662 - 2420}}{{2420}} \times 100 \cr & = \frac{{242}}{{2420}} \times 100 \cr & = 10\% \cr & {\text{2 years CI}}\% \cr & {\text{ = 10 + 10 + }}\frac{{10 \times 10}}{{100}} \cr & = 21\% \cr & {\text{So, 121}}\% {\text{ = 2420}} \cr & \Rightarrow {\text{100}}\% {\text{ = 2000}} \cr} $$

36. A sum of Rs. 8000 will amount to Rs. 8820 in 2 years if the interest is calculated every year. The rate of compound interest is = ?
a) 6%
b) 7%
c) 3%
d) 5%

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Principal = Rs 8000}} \cr & {\text{Amount = Rs 8820}} \cr & {\text{Let Rate = }}R \cr & {\text{Time = 2 years}} \cr & {\text{By using formula, }} \cr & 8820 = 8000{\left( {1 + \frac{R}{{100}}} \right)^2} \cr & \frac{{8820}}{{8000}} = {\left( {1 + \frac{R}{{100}}} \right)^2} \cr & \frac{{441}}{{400}} = {\left( {1 + \frac{R}{{100}}} \right)^2} \cr & {\text{Taking square root of both sides,}} \cr & \frac{{21}}{{20}} = \left( {1 + \frac{R}{{100}}} \right) \cr & R = 5\% \cr} $$

37. The compound interest on a certain some of money for 2 years at 10% per annum is Rs 420. The simple interest on the same sum at the same rate and for the same time will be ?
a) Rs. 350
b) Rs. 375
c) Rs. 380
d) Rs. 400

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Rate = 10}}\% \cr & {\text{Time = 2 years}} \cr & {\text{Effective rate of CI for 2 years}} \cr & {\text{ = 10 + 10 + }}\frac{{10 \times 10}}{{100}} = 21\% \cr & {\text{Effective rate of SI for 2 years}} \cr & {\text{ = 2}} \times {\text{10 = 20}}\% \cr & {\text{Required SI}} \cr & {\text{ = }}\frac{{420}}{{21}} \times {\text{20 = Rs. 400}} \cr} $$

38. A sum of money at compound interest amounts to thrice of itself in 3 years. In how many years it will be 9 times of itself ?
a) 9 years
b) 27 years
c) 6 years
d) 3 years

  Discussion

Answer: c
Explanation: x becomes 3x in 3 years
Therefore 3x also becomes 9x in 3 years
Required years = 3 + 3 = 6

39. A father left a will of Rs. 16400 for his two sons aged 17 and 18 years. They must get equal amount when they are 20 years, at 5% compound interest. Find the present share of the younger son = ?
a) Rs. 8000
b) Rs. 8200
c) Rs. 8400
d) Rs. 8800

  Discussion

Answer: a
Explanation:
Let the share of the younger and elder sons be Rs. x and Rs. (16400 - x)
Then, amount of Rs. x after 3 years = Amount of Rs. (16400 - x) after 2 years
$$\eqalign{ & x{\left( {1 + \frac{5}{{100}}} \right)^3} = \left( {16400 - x} \right){\left( {1 + \frac{5}{{100}}} \right)^2} \cr & x\left( {1 + \frac{5}{{100}}} \right) = \left( {16400 - x} \right) \cr & \frac{{21x}}{{20}} + x = 16400 \cr & \frac{{41x}}{{20}} = 16400 \cr & x = \left( {\frac{{16400 \times 20}}{{41}}} \right) \cr & x = 8000 \cr} $$

40. A sum of money put at compound interest amounts in 2 years to Rs. 672 and in 3 years Rs. 714. The rate of interest per annum is = ?
a) 5.5%
b) 6.0%
c) 6.25%
d) 6.75%

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{S}}{\text{.I}}{\text{. on Rs}}{\text{. 672 for 1 year}} \cr & {\text{ = Rs}}{\text{. }}\left( {714 - 672} \right) \cr & {\text{ = Rs}}{\text{. 42}} \cr & {\text{Rate = }}\left( {\frac{{100 \times 42}}{{672 \times 1}}} \right){\text{% }} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{ = 6}}{\text{.25% }} \cr} $$

41. In what time will Rs 64000 amounts to Rs 68921 at 5% per annum interest being compounded half yearly ?
a) $$1\frac{1}{2}$$ years
b) 2 years
c) 3 years
d) $$2\frac{1}{2}$$ years

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Amount}} = {\text{ }}{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^{2 \times {\text{t}}}} \cr & 68921 = 64000{\left( {1 + \frac{5}{{2 \times 100}}} \right)^{2 \times {\text{t}}}} \cr & \frac{{68921}}{{64000}} = {\left( {1 + \frac{1}{{40}}} \right)^{2 \times {\text{t}}}} \cr & {\left( {\frac{{41}}{{40}}} \right)^3} = {\left( {\frac{{41}}{{40}}} \right)^{2 \times {\text{t}}}} \cr & 2{\text{t = 3}} \cr & {\text{t = }}\frac{3}{2} \cr & {\text{t = 1}}\frac{1}{2}{\text{ years}} \cr} $$

42. When principal = Rs. S, rate of interest = 2r % p.a., then a person will get after 3 years at compound interest = ?
a) $${\text{Rs}}{\text{. }}\frac{{6{\text{Sr}}}}{{100}}$$
b) $${\text{Rs}}{\text{. S}}{\left( {1 + \frac{{\text{r}}}{{50}}} \right)^3}$$
c) $${\text{Rs}}{\text{. S}}{\left( {1 + \frac{{\text{r}}}{{100}}} \right)^3}$$
d) $${\text{Rs}}{\text{. 3S}}{\left( {1 + \frac{{\text{r}}}{{100}}} \right)^3}$$

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Principal = Rs S}} \cr & {\text{Rate }}\% {\text{ = 2r}}\,\% {\text{ p}}{\text{.a}}{\text{.}} \cr & {\text{Time = 3 years}} \cr & {\text{A = P}}{\left( {1 + \frac{{\text{r}}}{{100}}} \right)^T} \cr & {\text{A = S}}{\left( {1 + \frac{{{\text{2r}}}}{{100}}} \right)^3} \cr & {\text{A = S}}{\left( {1 + \frac{{\text{r}}}{{50}}} \right)^3} \cr} $$

43. At what rate of compound interest per annum will a sum of Rs. 1200 become Rs. 1348.32 in 2 years ?
a) 6.5%
b) 4.5%
c) 6%
d) 7.5%

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{A = P }}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} \cr & 1348.32 = 1200{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr & \frac{{134832}}{{120000}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr & \frac{{231525}}{{200000}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr & \frac{{2809}}{{2500}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr & {\left( {\frac{{53}}{{50}}} \right)^2} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr & \frac{{53}}{{50}} = 1 + \frac{{\text{R}}}{{100}} \cr & {\text{R}} = {\text{ 6% }} \cr} $$

44. On what sum of money will the difference between simple interest and compound interest for 2 years at 5% per annum be equal to Rs. 63 ?
a) Rs. 24600
b) Rs. 24800
c) Rs. 25200
d) Rs. 25500

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Rate of interest = 5}}\% {\text{ per annum}} \cr & {\text{Time = 2 year}} \cr & P\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^n} - 1} \right] - \frac{{P \times r \times t}}{{100}}{\text{ = 63}} \cr & P\left[ {{{\left( {1 + \frac{5}{{100}}} \right)}^2} - 1} \right] - \frac{{P \times 5 \times 2}}{{100}}{\text{ = 63}} \cr & P\left[ {{{\left( {1 + \frac{5}{{100}}} \right)}^2} - 1} \right] - \frac{{10P}}{{100}}{\text{ = 63}} \cr & P\left[ {{{\left( {\frac{{105}}{{100}}} \right)}^2} - 1} \right] - \frac{{10P}}{{100}}{\text{ = 63}} \cr & P\left( {\frac{{11025 - 10000}}{{10000}}} \right) - \frac{{10P}}{{100}} = 63 \cr & \frac{{1025P}}{{10000}} - \frac{{10P}}{{100}} = 63 \cr & \frac{{1025P - 1000P}}{{10000}} = 63 \cr & 25P = Rs.630000 \cr & P = \frac{{630000}}{{25}} \cr & P = Rs. 25200 \cr} $$

45. The sum for 2 years given a compound interest of Rs. 3225 at 15% rate. Then the sum is =
a) Rs. 10000
b) Rs. 20000
c) Rs. 15000
d) Rs. 32250

  Discussion

Answer: a
Explanation: Interest for 2 years at the rate of 15%
$$\eqalign{ & {\text{ = 15 + 15 + }}\frac{{15 \times 15}}{{100}} = 32.25\% \cr & {\text{According to question,}} \cr & {\text{32}}{\text{.25}}\% {\text{ = 3225}} \cr & {\text{100}}\% {\text{ = }}\frac{{3225}}{{32.25}} \times 100 \cr & = 100 \times 100 = 10000 \cr} $$

46. The compound interest on Rs. 5000 for 3 years at 10% p.a. will amount to = ?
a) Rs. 1654
b) Rs. 1655
c) Rs. 1600
d) Rs. 1565

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Principal = Rs. 5000}} \cr & {\text{Time = 3 years}} \cr & {\text{Rate = 10}}\% {\text{ = }}\frac{1}{{10}} \cr & {\text{Principal}}\,\,\,\,\,\,\,{\text{Amount}} \cr & \,\,\,\,\,\,\,\,\,\,{\text{10}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{11}} \cr & \,\,\,\,\,\,\,\,\,\,{\text{10}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{11}} \cr & \,\,\,\,\,\,\,\,\,\,{\text{10}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{11}} \cr & \underbrace {\overline {\,\,\,\,\,\,1000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{1331}}\,\,\,\,\,} }_{331{\text{ units}}} \cr & 1000{\text{ units = Rs 5000}} \cr & 1{\text{ units = Rs 5}} \cr & 331{\text{ units = 331}} \times {\text{5}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{ = Rs. 1655}} \cr} $$

47. If the compound interest on a certain sum for two years at 12% per annum is Rs. 2544, the simple interest on it at the same rate for 2 years will be = ?
a) Rs. 2400
b) Rs. 2500
c) Rs. 2480
d) Rs. 2440

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Rate = 12}}\% \cr & {\text{Time = 2 years}} \cr & {\text{Effective rate of CI for 2 years}} \cr & {\text{ = 12 + 12 + }}\frac{{12 \times 12}}{{100}} \cr & = 25.44\,\% \cr & {\text{Effective rate of SI for 2 years}} \cr & {\text{ = 12}} \times 2{\text{ = 24}}\,\% \cr & {\text{Required SI}} \cr & {\text{ = }}\frac{{2544}}{{25.44}} \times {\text{24}} = {\text{ Rs. 2400}} \cr} $$

48. A sum becomes Rs. 2916 in 2 years at 8% per annum compound interest. The simple interest at 9% per annum for 3 years on the same amount will be = ?
a) Rs. 600
b) Rs. 675
c) Rs. 650
d) Rs. 625

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Amount = Rs}}{\text{. 2916}} \cr & {\text{Time = 2 years }} \cr & {\text{Rate = 8}}\% \cr & {\text{Effective rate }}\% {\text{ CI for 2 years}} \cr & {\text{ = 8 + 8 + }}\frac{{8 \times 8}}{{100}} = 16.64\% \cr & {\text{Required sum}} \cr & {\text{ = }}\frac{{2916}}{{\left( {100 + 16.64} \right)}} \times 100 = {\text{Rs}}{\text{. }}2500 \cr & {\text{Required simple interest}} \cr & {\text{ = }}\frac{{2500 \times 9 \times 3}}{{100}} \cr & = {\text{Rs}}{\text{. }}675 \cr} $$

49. A sum of money is compound interest became doubles itself in 15 years. It will become eight times of itself in =
a) 45 years
b) 48 years
c) 54 years
d) 60 years

  Discussion

Answer: a
Explanation:
$$\eqalign{ & P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{15}} = 2P \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{15}} = 2 \cr & {\text{Let }}P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 8P \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 8 = {2^3} = {\left\{ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^{15}}} \right\}^3} \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{45}} \cr & \Rightarrow n = 45 \cr} $$

50. A finance company declares that, at a certain compound interest rate, a sum of money deposited by anyone will become 8 times in 3 years. If the same amount is deposited at the same compound rate of interest, then in how many years will it become 16 times ?
a) 4 years
b) 5 years
c) 6 years
d) 7 years

  Discussion

Answer: a
Explanation:
$$\eqalign{ & P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} = 8P \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} = 8 \cr & {\text{Let }}P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 16P \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 16 = {2^4} = {\left( {{2^3}} \right)^{\frac{4}{3}}} \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = {\left( 8 \right)^{\frac{4}{3}}} \cr & \Rightarrow {\left\{ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^3}} \right\}^{\frac{4}{3}}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^4} \cr & \Rightarrow n = 4 \cr} $$

51. A certain amount money at R% compounded annually after two and three years becomes Rs. 1440 and Rs. 1728 respectively, R% is ?
a) 5%
b) 10%
c) 15%
d) 20%

  Discussion

Answer: d
Explanation: b – a = 3 – 2 = 1
B = Rs. 1728, A = Rs.1440
$$\eqalign{ & R\% = \left( {\frac{B}{A} - 1 \times 100} \right)\% \cr & \,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{1728}}{{1440}} - 1 \times 100} \right)\% \cr & \,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{288}}{{1440}} \times 100} \right)\% \cr & \,\,\,\,\,\,\,\,\,\,\,\, = 20\% \cr} $$

52. The compound interest on a certain sum for 2 successive years are Rs. 225 and Rs. 238.50. The rate of interest per annum is = ?
a) $$7\frac{1}{2}$$%
b) 5%
c) 10%
d) 6%

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Required rate }}\% \cr & {\text{ = }}\frac{{\left( {238.50 - 225} \right)}}{{225}} \times 100 \cr & = 6\,\% \cr} $$

53. A man, borrow Rs 21000 at 10% compound interest. How much he has to pay annually at the end of each year, to settle his loan in two years ?
a) Rs. 12000
b) Rs. 12100
c) Rs. 12200
d) Rs. 12300

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Rate }} \Rightarrow {\text{ 10% = }}\frac{1}{{10}} \cr & {\text{Each installment of 2 years}} \cr & \Rightarrow \frac{{10}}{{11}} \times \frac{{\left( {10 + 11} \right)}}{{11}} \times {\text{ Installment = P}}{\text{.A}} \cr & {\text{P}}{\text{.A = 21000}} \cr & {\text{Each installment = 12100}} \cr} $$

54. A sum of money invested at compound interest amounts to Rs. 4624 in 2 years and Rs. 4913 in 3 years. The sum of money is = ?
a) Rs. 4096
b) Rs. 4260
c) Rs. 4335
d) Rs. 4360

  Discussion

Answer: a
Explanation: S.I. on Rs. 4624 for 1 year
$$\eqalign{ & {\text{ = Rs. }}\left( {4913 - 4624} \right) \cr & {\text{ = Rs. 289}} \cr & {\text{Rate}} = \left( {\frac{{100 \times 289}}{{4624 \times 1}}} \right)\% \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6\frac{1}{4}\% \cr & {\text{Now, }} x{\left( {1 + \frac{{25}}{{400}}} \right)^2} = 4624 \cr & x \times \frac{{17}}{{16}} \times \frac{{17}}{{16}} = 4624 \cr & x = \left( {4624 \times \frac{{16}}{{17}} \times \frac{{16}}{{17}}} \right) \cr & x = 4096 \cr} $$

55. A sum of Rs. 12000 deposited at compound interest become double after 5 years. After 20 years it will become ?
a) Rs. 96000
b) Rs. 120000
c) Rs. 124000
d) Rs. 192000

  Discussion

Answer: d
Explanation:
$$\eqalign{ & 12000 \times {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^5} = 24000 \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^5} = 2 \cr & {\left[ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^5}} \right]^4} = {2^4} = 16 \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 16 \cr & \Rightarrow {\text{P}}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}}{\text{ = 16P}} \cr & \Rightarrow 12000{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 16 \times 12000 \cr & \Rightarrow 12000{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 192000 \cr} $$

56. The compound interest on Rs. 4000 for 4 years at 10% per annum will be =
a) Rs. 1856.40
b) Rs. 1600
c) Rs. 1856
d) Rs. 1756.60

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{10}}\% {\text{ = }}\frac{1}{{10}} \cr & {\text{Principal}}\,\,\,\,\,\,\,{\text{Amount}} \cr & \,\,\,\,\,\,\,{\text{10}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,11 \cr & \,\,\,\,\,\,\,{\text{10}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,11 \cr & \,\,\,\,\,\,\,{\text{10}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,11 \cr & \,\,\,\,\,\,\,{\text{10}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,11 \cr & \underbrace {\overline {\,\,\,10000\,\,\,\,\,\,{\text{:}}\,\,\,\,\,{\text{14641}}\,\,\,} }_{{\text{CI = 4641}}} \cr & {\text{Principal = 10000 units}} \cr & {\text{ = Rs}}{\text{. 4000 (given)}} \cr & {\text{1 unit = }}\frac{2}{5} \cr & {\text{CI = 4641 unit}} \cr & {\text{ = Rs}}{\text{. }}\left( {\frac{2}{5} \times 4641} \right) \cr & = {\text{Rs}}{\text{. }}1856.40 \cr} $$

57. What will be the difference between S.I. and C.I. on a sum of Rs. 15000 for 2 years at the same rate of interest of $$12\frac{1}{2}$$ % per annum ?
a) Rs. 230.550
b) Rs. 234.375
c) Rs. 250.129
d) Rs. 324.357

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{S}}{\text{.I}}{\text{. = Rs}}{\text{. }}\left( {15000 \times \frac{{25}}{2} \times 2 \times \frac{1}{{100}}} \right) \cr & \,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{. }}3750 \cr & {\text{C}}{\text{.I}}{\text{. = Rs}}{\text{. }}\left[ {15000{{\left( {1 + \frac{{25}}{{2 \times 100}}} \right)}^2} - 15000} \right] \cr & = {\text{Rs}}{\text{. }}\left( {15000 \times \frac{9}{8} \times \frac{9}{8} - 15000} \right) \cr & = {\text{Rs}}{\text{. }}\left( {18948.375 - 15000} \right) \cr & = {\text{Rs}}{\text{. }}3984.375 \cr & {\text{Difference }}{\text{ = Rs}}{\text{. }}\left( {3984.375 - 3750} \right) \cr & = {\text{Rs}}{\text{. }}234.375 \cr} $$

58. The compound interest on a certain sum of money for 2 years at 10% per annum is Rs. 525.The simple interest on the same sum of money for double the time at half the rate percent per annum is ?
a) Rs. 1000
b) Rs. 500
c) Rs. 200
d) Rs. 800

  Discussion

Answer: b
Explanation: Let the sum of money be rs. P
$$\eqalign{ & \left[ {P{{\left( {1 + \frac{R}{{100}}} \right)}^t} - P} \right] = {\text{C}}{\text{.I}}{\text{.}} \cr & \left[ {P{{\left( {1 + \frac{{10}}{{100}}} \right)}^2} - P} \right] = 525 \cr & P{\left( {\frac{{11}}{{10}}} \right)^2} - 1 = 525 \cr & P\left( {\frac{{121}}{{100}} - 1} \right) = 525 \cr & P\left( {\frac{{21}}{{100}}} \right) = 525 \cr & P = \frac{{525 \times 100}}{{21}} \cr & P = {\text{Rs}}{\text{.}}\,2500 \cr} $$
Simple interest on the same sum Rs. 2500 for 4 (double the time) years at 5% (half the rate of percent per annum) is
$$\eqalign{ & {\text{S}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left( {\frac{{2500 \times 5 \times 4}}{{100}}} \right) \cr & \,\,\,\,\,\,\,\,\,{\text{ = Rs}}{\text{. 500}} \cr} $$

59. A certain sum, invested at 4% per annum compound interest, compounded half yearly, amounts to Rs. 7803 at the end of one year. The sum is ?
a) Rs. 7000
b) Rs. 7200
c) Rs. 7500
d) Rs. 7700

  Discussion

Answer: c
Explanation: Time (t) = 1 years
Rate % = 4%
Amount = Rs. 7803
When interest is compounded half yearly
New Rate = $$\frac{4}{2}$$ = 2%
Time = 1 × 2 = 2 years
Required rate% for 2 years CI
$${\text{ = 2}} + {\text{2}} + \frac{{2 \times 2}}{{100}} = 4.04\% $$
(100 + 4.04)% of sum = Rs. 7803
$$\eqalign{ & {\text{Sum = }}\frac{{7803}}{{104.04}} \times 100 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{. }}7500 \cr} $$

60. The difference between CI and SI for 3 years Rs. 992. If rate of interest is 10%. Find the Principal ?
a) Rs. 22000
b) Rs. 30000
c) Rs. 28000
d) Rs. 32000

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Rate}} = 10\% ,\, \cr & {\text{Let}}\,{\text{Principal}} = P \cr & {\text{S}}{\text{.I}}{\text{.}} = \frac{{P \times 10 \times 3}}{{100}} = \frac{{3P}}{{10}} \cr & {\text{C}}{\text{.I}}{\text{.}} = P\left\{ {{{\left( {1 + \frac{1}{{10}}} \right)}^3} - 1} \right\} \cr & {\text{C}}{\text{.I}}{\text{.}}\,\, - \,\,{\text{S}}{\text{.I}}{\text{.}} = 992 \cr & P\left\{ {{{\left( {1 + \frac{1}{{10}}} \right)}^3} - 1} \right\} - \frac{{3P}}{{10}} = 992 \cr & P\left\{ {{{\left( {\frac{{11}}{{10}}} \right)}^3} - 1 - \frac{3}{{10}}} \right\} = 992 \cr & P\left\{ {\frac{{\left( {1331 - 1000 - 300} \right)}}{{1000}}} \right\} = 992 \cr & P\left( {\frac{{31}}{{1000}}} \right) = 992 \cr & P = 32000 \cr} $$

61. A certain some of money and Rs. 2420 in 2 years and Rs. 2662 in 3 years at same rate of compound interest, compounded annually. The rate of interest per annum is =
a) 6%
b) 8%
c) 9%
d) 10%

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Amount after three years}} {\text{ = Rs. 2662}} \cr & {\text{Amount after two years}} {\text{ = Rs. 2420}} \cr & {\text{Net interest earned in the }}{{\text{3}}^{{\text{rd}}}}{\text{ year}} \cr & {\text{ = }}\,{\text{2662}} - {\text{2420}} \cr & {\text{ = Rs}}{\text{. 242}} \cr & {\text{Rate of interest (r)}} \cr & {\text{ = }}\frac{{242}}{{2420}} \times {\text{100 = 10% }} \cr} $$
(2nd year's amount is principal for 3rd year)

62. Kamal took Rs. 6800 as a loan which along with interest is to be repaid in two equal annual installment. If the rate of interest is $$12\frac{1}{2}$$ % compounded annually, then the value of each installment is =
a) Rs. 8100
b) Rs. 4150
c) Rs. 4050
d) Rs. 4000

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Rate of interest}} \cr & {\text{r}} = {\text{12}}\frac{1}{2}\% = \frac{1}{8} \cr} $$
    Year         Principal         Installment      
I 8×9 9×9 ......(i)
II 64 → 81 ......(ii)
Since, installment is equal hence multiply equation (i) by 9
Total principal = 72 + 64 = 136 units
136 units → 6800
1 units → 50
81 units → 4050
Each installment = Rs. 4050

63. A man invests Rs 4000 for 3 years at compound interest. After one year the money amounts to Rs. 4320. What will be the amount (to the nearest rupee) due at the end of 3 years ?
a) Rs. 4939
b) Rs. 5039
c) Rs. 5789
d) Rs. 6129

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Le the rate be R }}\% {\text{ p}}{\text{.a}}{\text{.}} \cr & {\text{4000}}\left( {1 + \frac{{{\text{R }}}}{{100}}} \right) = 4320 \cr & 1 + \frac{{{\text{R }}}}{{100}} = \frac{{4320}}{{4000}} = \frac{{108}}{{100}} \cr & \frac{{{\text{R }}}}{{100}} = \frac{8}{{100}} \cr & {\text{R }} = 8 \cr & {\text{Amount after 3 yeras}} \cr & {\text{ = Rs}}{\text{. }}\left[ {4000 + {{\left( {1 + \frac{8}{{100}}} \right)}^3}} \right] \cr & {\text{ = Rs}}{\text{. }}\left( {4000 \times \frac{{27}}{{25}} \times \frac{{27}}{{25}} \times \frac{{27}}{{25}}} \right) \cr & {\text{ = Rs}}{\text{. }}\left( {\frac{{629856}}{{125}}} \right) \cr & {\text{ = Rs}}{\text{. }}5038.848 \approx 5039 \cr} $$

64. A sum of Rs. 13360 was borrowed at $${\text{8}}\frac{3}{4}$$ % per annum compound interest and paid back in two years in two equal annual installments. What was the amount of each installment ?
a) Rs. 5769
b) Rs. 7569
c) Rs. 7009
d) Rs. 7500

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Rate of interest (r)}} \cr & {\text{ = 8}}\frac{3}{4}\% = \frac{7}{{80}} = \frac{{87 \to {\text{ Installment}}}}{{80 \to {\text{Principal}}}} \cr} $$
⇒     I     80×87     →     87×87   ......(i)
⇒     II     6400     →     7569   ......(ii)
Since, installment is equal hence multiply equation (i) by 87
Total principal = 6960 + 6400 = 13360
13360 units = Rs. 13360
1 units = Rs. 1
7569 units = Rs. 7569
Each installment = Rs. 7569

65. An amount of Rs. 10000 becomes Rs. 14641 in 2 years if the interest is compounded half yearly. What is the rate of compound interest p.c.p.a. ?
a) 10%
b) 12%
c) 16%
d) 20%

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Let the rate be R% p}}{\text{.a}}{\text{. }} \cr & {\text{10000}}{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^4} = 14641 \cr & \Rightarrow {\left( {1 + \frac{{\text{R}}}{{200}}} \right)^4} = \frac{{14641}}{{10000}} = {\left( {\frac{{11}}{{10}}} \right)^4} \cr & 1 + \frac{{\text{R}}}{{200}} = \frac{{11}}{{10}} \cr & \frac{{\text{R}}}{{200}} = \frac{1}{{10}} \cr & {\text{R}} = {\text{20% }} \cr} $$

66. What will be the compound interest on a sum of Rs. 25,000 after 3 years at the rate of 12 p.c.p.a.?
a) Rs. 9000.30
b) Rs. 9720
c) Rs. 10123.20
d) Rs. 10483.20

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Amount}} = Rs.\,\left[ {25000 \times {{\left( {1 + \frac{{12}}{{100}}} \right)}^3}} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,\left( {25000 \times \frac{{28}}{{25}} \times \frac{{28}}{{25}} \times \frac{{28}}{{25}}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,35123.20 \cr & {\text{C}}{\text{.I}}{\text{.}} = Rs.\left( {35123.20 - 25000} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,10123.20 \cr} $$

67. At what rate of compound interest per annum will a sum of Rs. 1200 become Rs. 1348.32 in 2 years?
a) 6%
b) 6.5%
c) 7%
d) 7.5%

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Let}}\,{\text{the}}\,{\text{rate}}\,{\text{be}}\,R\% \,p.a. \cr & 1200 \times {\left( {1 + \frac{R}{{100}}} \right)^2} = 1348.32 \cr & \Rightarrow {\left( {1 + \frac{R}{{100}}} \right)^2} = \frac{{134832}}{{120000}} = \frac{{11236}}{{10000}} \cr & {\left( {1 + \frac{R}{{100}}} \right)^2} = {\left( {\frac{{106}}{{100}}} \right)^2} \cr & 1 + \frac{R}{{100}} = \frac{{106}}{{100}} \cr & R = 6\% \cr} $$

68. The least number of complete years in which a sum of money put out at 20% compound interest will be more than doubled is
a) 3
b) 4
c) 5
d) 6

  Discussion

Answer: b
Explanation:
$$\eqalign{ & P{\left( {1 + \frac{{20}}{{100}}} \right)^n} > 2P\,\,\, \Rightarrow \,\,\,{\left( {\frac{6}{5}} \right)^n} > 2 \cr & \left( {\frac{6}{5} \times \frac{6}{5} \times \frac{6}{5} \times \frac{6}{5}} \right) > 2 \cr & n = 4\,{\text{years}} \cr} $$

69. Albert invested an amount of Rs. 8000 in a fixed deposit scheme for 2 years at compound interest rate 5 p.c.p.a. How much amount will Albert get on maturity of the fixed deposit?
a) Rs. 8600
b) Rs. 8620
c) Rs. 8820
d) None of these

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Amount}} = Rs.\left[ {8000 \times {{\left( {1 + \frac{5}{{100}}} \right)}^2}} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,\left( {8000 \times \frac{{21}}{{20}} \times \frac{{21}}{{20}}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,8820 \cr} $$

70. The effective annual rate of interest corresponding to a nominal rate of 6% per annum payable half-yearly is:
a) 6.06%
b) 6.07%
c) 6.08%
d) 6.09%

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Amount}}\,{\text{of}}\,{\text{Rs}}{\text{.}}\,{\text{100}}\,{\text{for}}\,{\text{1}}\,{\text{year}}\,{\text{when}}\, {\text{compounded}}\,{\text{half - yearly}} \cr & = Rs.\,\left[ {100 \times {{\left( {1 + \frac{3}{{100}}} \right)}^2}} \right] \cr & = Rs.\,106.09 \cr & {\text{Effective}}\,{\text{rate}} = \left( {106.09 - 100} \right)\% \cr & = 6.09\% \cr} $$

71. A man borrow Rs. 4000 at 15%, compound rate of interest. At the end of each year he pays back Rs. 1500. How much amount should be pay at the end of the third year to clear all his dues ?
a) Rs. 874.75
b) Rs. 824.50
c) Rs. 924.25
d) Rs. 974.25

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Amount after }}{{\text{1}}^{{\text{st}}}}{\text{ year}} \cr & {\text{ = Rs}}{\text{. }}\left[ {4000\left( {1 + \frac{{15}}{{100}}} \right) - 1500} \right] \cr & = {\text{Rs}}{\text{. }}\left[ {\left( {4000 \times \frac{{23}}{{20}}} \right) - 1500} \right] \cr & = {\text{Rs}}{\text{. }}\left( {4600 - 1500} \right) \cr & = {\text{Rs}}{\text{. }}3100 \cr & {\text{Amount after }}{{\text{2}}^{{\text{nd}}}}{\text{ year}} \cr & {\text{ = Rs}}{\text{. }}\left[ {3100\left( {1 + \frac{{15}}{{100}}} \right) - 1500} \right] \cr & = {\text{Rs}}{\text{. }}\left[ {\left( {3100 \times \frac{{23}}{{20}}} \right) - 1500} \right] \cr & = {\text{Rs}}{\text{. }}\left( {3565 - 1500} \right) \cr & = {\text{Rs}}{\text{. }}2065 \cr & {\text{Amount after }}{{\text{3}}^{{\text{rd}}}}{\text{ year}} \cr & {\text{ = Rs}}{\text{. }}\left[ {2065\left( {1 + \frac{{15}}{{100}}} \right) - 1500} \right] \cr & = {\text{Rs}}{\text{. }}\left[ {\left( {2065 \times \frac{{23}}{{20}}} \right) - 1500} \right] \cr & = {\text{Rs}}{\text{. }}\left( {2374.75 - 1500} \right) \cr & = {\text{Rs}}{\text{. }}874.75 \cr} $$

72. A certain sum of amounts to Rs. 5832 in 2 years at 8% per annum compound interest, the sum is = ?
a) Rs. 5000
b) Rs. 5200
c) Rs. 5280
d) Rs. 5400

  Discussion

Answer: a
Explanation: $${\text{Rate 8% = }}\frac{2}{{25}}$$
Principal       Amount
25 27
25 27
625 729
↓ × 8 ↓ × 8
5000 5832
Required sum = Rs. 5000

73. A person deposited a sum of of Rs 6000 in a bank at 5% per annum simple interest. Another person deposited Rs 5000 at 8% per annum compound interest. After two years, the difference of their interest will be =
a) Rs. 230
b) Rs. 232
c) Rs. 832
d) Rs. 600

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Principal (}}{{\text{P}}_1}{\text{) = Rs. 6000}} \cr & {\text{Time (t) = 2 years}} \cr & {\text{Rate % = 5% }} \cr & {\text{Simple interest}} {\text{ = }}\frac{{6000 \times 5 \times 2}}{{100}}{\text{ = Rs. 600}} \cr & {\text{Principal (}}{{\text{P}}_2}{\text{) = Rs. 5000}} \cr & {\text{Time (t) = 2 years}} \cr & {\text{Rate % = 8% }} \cr} $$
2 year effective rate for Compound interest
$$\eqalign{ & = 8 + 8 + \frac{{8 \times 8}}{{100}} = 16.64\% \cr & {\text{Compound}}\,{\text{Interest}} \cr & {\text{ = 5000}} \times \frac{{16.64}}{{100}} = {\text{Rs}}{\text{. 832}} \cr & {\text{Difference}} {\text{ = Rs}}{\text{. }}\left( {832 - 600} \right) \cr & = {\text{Rs}}{\text{.}}\,232 \cr & {\text{ }} \cr} $$

74. A man invests Rs. 5000 for 3 years at 5% p.a. compound interest reckoned yearly. Income tax at the rate of 20% on the interest earned is deducted at the end of each year. Find the amount at the end of the third year = ?
a) Rs. 5624.32
b) Rs. 5627.20
c) Rs. 5630.50
d) Rs. 5788.125

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{C}}{\text{.I}}{\text{. earned during }}{{\text{1}}^{{\text{st}}}}{\text{ year}} \cr & {\text{= }}\,{\text{Rs}}{\text{.}}\left[ {5000\left( {1 + \frac{5}{{100}}} \right) - 5000} \right]{\text{ }} \cr & = {\text{Rs}}{\text{. }}\left( {5250 - 5000} \right) \cr & = {\text{Rs}}{\text{. 250}} \cr & {\text{Amount after }}{{\text{1}}^{{\text{st}}}}{\text{ year}} \cr & = {\text{Rs}}{\text{. }}\left( {5250 - 20\% {\text{ of }}250} \right) \cr & = {\text{Rs}}{\text{.}}\left( {5250 - 50} \right){\text{ }} \cr & {\text{= }}\,{\text{Rs}}{\text{.}}\,{\text{5200 }} \cr & {\text{C}}{\text{.I}}{\text{. earned during }}{{\text{2}}^{{\text{nd}}}}{\text{ year}} \cr & = {\text{Rs}}{\text{.}}\left[ {5200\left( {1 + \frac{5}{{100}}} \right) - 5200} \right]{\text{ }} \cr & = {\text{Rs}}{\text{. }}\left( {5460 - 5200} \right) \cr & = {\text{Rs}}{\text{.260 }} \cr & {\text{Amount after }}{{\text{2}}^{{\text{nd}}}}{\text{ year}} \cr & {\text{= Rs}}{\text{. }}\left( {5460 - 20\% {\text{ of }}260} \right) \cr & {\text{= Rs}}{\text{. }}\left( {5460 - 52} \right) \cr & = {\text{Rs}}{\text{.}}\,{\text{5408 }} \cr & {\text{C}}{\text{.I}}{\text{. earned during }}{{\text{3}}^{{\text{rd}}}}{\text{ year}} \cr & {\text{= Rs}}{\text{. }}\left[ {5408\left( {1 + \frac{5}{{100}}} \right) - 5408} \right] \cr & = {\text{Rs}}{\text{. }}\left( {5678.40 - 5408} \right) \cr & = {\text{Rs}}{\text{.}}\,{\text{270}}{\text{.40 }} \cr & {\text{Amount after }}{{\text{3}}^{{\text{rd}}}}{\text{ year}} \cr & = {\text{Rs}}{\text{. }}\left( {5678.40 - 20\% \,{\text{of }}270.40} \right) \cr & = {\text{Rs}}{\text{. }}\left( {5678.40 - 54.08} \right) \cr & = {\text{Rs}}{\text{. 5624}}{\text{.32}} \cr} $$

75. At a certain rate per annum, the simple interest on a sum of money for one year is Rs. 260 and the compound interest on the same sum for two years is Rs. 540.80. The rate of interest per annum is =
a) 4%
b) 6%
c) 8%
d) 10%

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{SI for 1 year}} {\text{ = Rs 260}} \cr & {\text{SI for 2 year}} {\text{ = 260}} \times {\text{2}} \cr & {\text{ = Rs}}{\text{. 520 }} \cr & {\text{Difference in (CI}} - {\text{SI)}} \cr & \left( {540.80 - 520} \right){\text{ = Rs 20}}{\text{.8}} \cr & {\text{Required rate % }} \cr & {\text{ = }}\frac{{20.8}}{{260}} \times {\text{100}} \cr & {\text{ = 8% }} \cr} $$

76. In how many years will a sum of Rs. 800 at 10% per annum compounded semi annually become Rs. 926.10?
a) $$1\frac{1}{3}$$ years
b) $$1\frac{1}{2}$$ years
c) $$2\frac{1}{3}$$ years
d) $$2\frac{1}{2}$$ years

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Let the time be }}n{\text{ year}} \cr & {\text{800}} \times {\left( {1 + \frac{5}{{100}}} \right)^{2n}} = 926.10 \cr & {\left( {1 + \frac{5}{{100}}} \right)^{2n}} = \frac{{9261}}{{8000}} \cr & {\left( {\frac{{21}}{{20}}} \right)^{2n}} = {\left( {\frac{{21}}{{20}}} \right)^3} \cr & 2n = 3 \cr & n = \frac{3}{2} \cr & n = 1\frac{1}{2}{\text{years}} \cr} $$

77. A loan of Rs. 12300 at 5% per annum compound interest, is to be repaid in two equal annual installments at the end of every year. Find the amount of each installment ?
a) Rs. 6651
b) Rs. 6615
c) Rs. 6516
d) Rs. 6156

  Discussion

Answer: b
Explanation: $$5\% = \frac{1}{{20}} = \frac{{21 \to {\text{ Installment}}}}{{20 \to {\text{ Principal}}}}$$
Year         Principal         Installment  
⇒ I 20×21 21×21 ......(i)
⇒ II 400→ 441 .....(ii)
Since, installment is equal, hence multiply equation (i) by 21
Total principal = 420 + 400 = 820
820 units = Rs. 12300
1 units = Rs. 15
441 units = Rs. 6615
Each installment = Rs. 6615

78. An amount of Rs 6000 lent at 5% per annum compounded interest for 2 years will become =
a) Rs. 600
b) Rs. 6600
c) Rs. 6610
d) Rs. 6615

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Amount = 6000}}{\left( {1 + \frac{5}{{100}}} \right)^2} \cr & {\text{Amount = 6000}} \times \frac{{21}}{{20}} \times \frac{{21}}{{20}} \cr & {\text{Amount = Rs. 6615}} \cr} $$

79. The simple interest on a certain sum of money for 3 years at 8% per annum is half the compound interest on Rs. 4000 for 2 years at 10% per annum. The sum placed on simple interest is ?
a) Rs. 1550
b) Rs. 1650
c) Rs. 1750
d) Rs. 2000

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{C}}{\text{.I}}{\text{.}} {\text{ = Rs}}{\text{.}}\left[ {4000 \times {{\left( {1 + \frac{{10}}{{100}}} \right)}^2} - 4000} \right] \cr & = {\text{ Rs}}{\text{.}}\left( {4000 \times \frac{{11}}{{10}} \times \frac{{11}}{{10}} - 4000} \right) \cr & = {\text{Rs}}{\text{. 840}} \cr & {\text{Sum = Rs}}{\text{.}}\left( {\frac{{420 \times 100}}{{3 \times 8}}} \right) \cr & = {\text{Rs}}{\text{. }}1750 \cr} $$

80. There is 60% increase in an amount in 6 years at simple interest. What will be the compound interest of Rs. 12000 after 3 years at the same rate ?
a) Rs. 2160
b) Rs. 3120
c) Rs. 3972
d) Rs. 6240

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Let P}} = {\text{Rs}}.100 \cr & {\text{S}}{\text{.I}}{\text{. = Rs}}.60{\text{ and}} \cr & {\text{T = 6 years}} \cr & {\text{R = }}\frac{{100 \times 60}}{{100 \times 6}}{\text{ = 10% p}}{\text{.a}}{\text{.}} \cr & {\text{P = Rs 12000,}} \cr & {\text{T = 3 years and}} \cr & {\text{R = 10% p}}{\text{.a}}{\text{.}} \cr & {\text{C}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left[ {12000 \times \left\{ {{{\left( {1 + \frac{{10}}{{100}}} \right)}^3} - 1} \right\}} \right] \cr & = {\text{Rs}}{\text{.}}\left( {12000 \times \frac{{331}}{{1000}}} \right) \cr & = {\text{Rs}}{\text{. }}3972 \cr} $$

81. A sum of money becomes eight times in 3 years, If the rate is compounded annually. In how much time will the same amount at the same compound rate become sixteen times ?
a) 6 years
b) 4 years
c) 8 years
d) 5 years

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Let principal = P}} \cr & {{Case (I)}} \cr & {\text{Time = 3 years,}} \cr & {\text{Amount = 8P}} \cr & 8{\text{P = P}}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} \cr & {\left( 2 \right)^3} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} \cr & {\text{Taking cube root of both sides,}} \cr & {\text{2 = }}\left( {1 + \frac{{\text{R}}}{{100}}} \right) \cr & {\text{R = 100 }}\% \cr & {{Case (II)}} \cr & {\text{Let after t years it will be 16 times}} \cr & 16{\text{P = P}}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{\text{t}}} \cr & 16 = {\left( 2 \right)^{\text{t}}} \cr & {\left( 2 \right)^4} = {\left( 2 \right)^{\text{t}}} \cr & {\text{t}} = 4 \cr & {\text{Required time}} {\text{(t) = 4 years}} \cr} $$

82. A sum of money placed at compound interest double itself in 4 years. In how many years will it amount to four times itself ?
a) 12 years
b) 13 years
c) 8 years
d) 16 years

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Let}}, {\text{ Principal}} = Rs.\,100\% \cr & {\text{Amount}} = Rs.\,200 \cr & {\text{Rate}} = r\% \cr & {\text{Time}} = 4\,{\text{years}} \cr & A = P \times {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^n} \cr & 200 = 100 \times {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^4} \cr & 2 = {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^4} - - - - \left( i \right) \cr & {\text{If}}\,{\text{sum}}\,{\text{become}}\,{\text{8}}\,{\text{times}}\,{\text{in}}\,{\text{the}}\,{\text{time}}\,n\,{\text{years}} \cr & 4 = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} \cr & {2^2} = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} - - - - \left( {ii} \right) \cr & {\text{Using}}\,{\text{eqn}}\,\left( i \right)in\left( {ii} \right),\,{\text{we}}\,{\text{get}} \cr & {\left( {{{\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]}^4}} \right)^2} = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} \cr & {\left[ {1 + \left( {\frac{r}{{100}}} \right)} \right]^{8}} = {\left( {1 + \left( {\frac{r}{{100}}} \right)} \right)^n} \cr & n = 8\,{\text{years}}. \cr} $$

83. The compound interest on Rs. 30000 at 7% per annum for a certain time is Rs. 4347. The times is = ?
a) 3 years
b) 4 years
c) 2 years
d) 2.5 years

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Principal = Rs}}{\text{. 30000}} \cr & {\text{CI = Rs 4347}} \cr & {\text{Rate = 7}}\% \cr & {\text{By using formula, }} \cr & \left( {30000 + 4347} \right) = 30000{\left( {1 + \frac{7}{{100}}} \right)^{\text{t}}} \cr & 34347 = 30000{\left( {1 + \frac{7}{{100}}} \right)^{\text{t}}} \cr & \frac{{34347}}{{30000}} = {\left( {\frac{{107}}{{100}}} \right)^{\text{t}}} \cr & \left( {\frac{{11449}}{{10000}}} \right) = {\left( {\frac{{107}}{{100}}} \right)^{\text{t}}} \cr & {\left( {\frac{{107}}{{100}}} \right)^2} = {\left( {\frac{{107}}{{100}}} \right)^{\text{t}}} \cr & {\text{t}} = 2\,{\text{years}} \cr} $$

84. A money lender borrows money at 4% per annum and pays the interest at the end of the year. He lends it at 6% per annum compound interest compounded half yearly and receives the interest at the end of the year. In this way, he gains Rs. 104.50, a year. The amount of money be borrows, is ?
a) Rs. 4500
b) Rs. 5000
c) Rs. 5500
d) Rs. 6000

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Let the sum Rs}}{\text{. }}x{\text{ }} \cr & {\text{C}}{\text{.I}}{\text{. when compounded half yearly}} {\text{ = Rs}}{\text{.}}\left[ {x \times {{\left( {1 + \frac{3}{{100}}} \right)}^2} - x} \right] \cr & = {\text{Rs}}{\text{.}}\left( {\frac{{10609}}{{10000}}x - x} \right) \cr & = {\text{Rs}}{\text{.}}\left( {\frac{{609x}}{{10000}}} \right) \cr & {\text{C}}{\text{.I}}{\text{. when compounded yearly}} {\text{ = Rs}}{\text{.}}\left[ {x \times \left( {1 + \frac{4}{{100}}} \right) - x} \right] \cr & = {\text{Rs}}{\text{.}}\left( {\frac{{26x}}{{25}} - x} \right) \cr & = {\text{Rs}}{\text{.}}\frac{x}{{25}} \cr & \therefore \frac{{609x}}{{10000}} - \frac{x}{{25}} = 104.50 \cr & \frac{{209x}}{{10000}} = 104.50 \cr & x = \left( {\frac{{104.50 \times 10000}}{{209}}} \right) \cr & x = 5000 \cr} $$

85. The effective annual rate of interest corresponding to a nominal rate of 6% per annum payable half yearly is = ?
a) 6.06%
b) 6.07%
c) 6.08%
d) 6.09%

  Discussion

Answer: d
Explanation: Amount of Rs. 100 for 1 year when compounded half yearly
$$\eqalign{ & {\text{ = Rs}}{\text{.}}\left[ {100 \times {{\left( {1 + \frac{3}{{100}}} \right)}^2}} \right] \cr & = {\text{Rs}}.106.09 \cr & {\text{Effective rate}} \cr & {\text{ = }}\left( {106.09 - 100} \right)\% \cr & = 6.09\,\% \cr} $$

86. A bank offers 5% compound interest calculated on half-yearly basis. A customer deposits Rs. 1600 each on 1st January and 1st July of a year. At the end of the year, the amount he would have gained by way of interest is:
a) Rs. 120
b) Rs. 121
c) Rs. 122
d) Rs. 123

  Discussion

Answer: b
Explanation:
$$\eqalign{ & {\text{Amount}} = {1600 \times {{\left( {1 + \frac{5}{{2 \times 100}}} \right)}^2} + 1600 \times \left( {1 + \frac{5}{{2 \times 100}}} \right)} \cr & = {1600 \times \frac{{41}}{{40}} \times \frac{{41}}{{40}} + 1600 \times \frac{{41}}{{40}}} \cr & = {1600 \times \frac{{41}}{{40}}\left( {\frac{{41}}{{40}} + 1} \right)} \cr & = {\frac{{1600 \times 41 \times 81}}{{40 \times 40}}} \cr & = Rs.\,3321 \cr & C.I. = Rs.\,\left( {3321 - 3200} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,121 \cr} $$

87. The difference between simple and compound interests compounded annually on a certain sum of money for 2 years at 4% per annum is Rs. 1. The sum (in Rs.) is:
a) 625
b) 630
c) 640
d) 650

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Let}}\,{\text{the}}\,{\text{sum}}\,{\text{be}}\,Rs.\,x.\,{\text{Then}}, \cr & {\text{C}}{\text{.I}}{\text{.}} = {x{{\left( {1 + \frac{4}{{100}}} \right)}^2} - x} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\frac{{676}}{{625}}x - x} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{51}}{{625}}x \cr & {\text{S}}{\text{.I}}{\text{.}} = {\frac{{x \times 4 \times 2}}{{100}}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{2x}}{{25}} \cr & \therefore \frac{{51x}}{{625}} - \frac{{2x}}{{25}} = 1 \cr & x = 625 \cr} $$

88. There is 60% increase in an amount in 6 years at simple interest. What will be the compound interest of Rs. 12,000 after 3 years at the same rate?
a) Rs. 2160
b) Rs. 3120
c) Rs. 3972
d) Rs. 6240

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Let}}\,{\text{P = Rs}}{\text{.}}\,{\text{100}}\,{\text{Then}},\, \cr & \,\,\,\,\,{\text{S}}{\text{.I}}{\text{. = }}\,{\text{Rs}}{\text{.}}\,{\text{60}}\,{\text{and}} \cr & \,\,\,\,\,\,\,\,{\text{T = 6}}\,{\text{years}} \cr & R = {\frac{{100 \times 60}}{{100 \times 6}}} = 10\% \,p.a. \cr & {\text{Now}},\,P = Rs.\,12000 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,T = 3\,{\text{year}}\,{\text{and}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,R = \,10\% \,p.a. \cr & {\text{C}}{\text{.I}}{\text{.}} = Rs.\,\left[ {12000 \times \left\{ {{{\left( {1 + \frac{{10}}{{100}}} \right)}^3} - 1} \right\}} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,\left( {12000 \times \frac{{331}}{{1000}}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,3972 \cr} $$

89. What is the difference between the compound interests on Rs. 5000 for $$1\frac{1}{2}$$ years at 4% per annum compounded yearly and half-yearly?
a) Rs. 2.04
b) Rs. 3.06
c) Rs. 4.80
d) Rs. 8.30

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{C}}{\text{.I}}{\text{.}}\,{\text{when}}\,{\text{interest}}\,{\text{compounded}}\,{\text{yearly}} = Rs.\left[ {5000 \times \left( {1 + \frac{4}{{100}}} \right) \times \left( {1 + \frac{{\frac{1}{2} \times 4}}{{100}}} \right)} \right] \cr & = Rs.\left( {5000 \times \frac{{26}}{{25}} \times \frac{{51}}{{50}}} \right) \cr & = Rs.5304 \cr & {\text{C}}{\text{.I}}{\text{.}}\,{\text{when}}\,{\text{interest}}\,{\text{in}}\,{\text{compounded}}\,{\text{half - yearly}} = Rs.\,\left[ {5000 \times {{\left( {1 + \frac{2}{{100}}} \right)}^3}} \right] \cr & = Rs.\,\left( {5000 \times \frac{{51}}{{50}} \times \frac{{51}}{{50}} \times \frac{{51}}{{50}}} \right) \cr & = Rs.\,5306.04 \cr & {\text{Difference}} = Rs.\,\left( {5306.04 - 5304} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,2.04 \cr} $$

90. The compound interest on Rs. 30,000 at 7% per annum is Rs. 4347. The period (in years) is:
a) 2
b) $$2\frac{1}{2}$$
c) 3
d) 4

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Amount}} = Rs.\,\left( {30000 + 4347} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,34347 \cr & {\text{Let}}\,{\text{the}}\,{\text{time}}\,{\text{be}}\,n\,{\text{years}} \cr & 30000\,{\left( {1 + \frac{7}{{100}}} \right)^n} = 34347 \cr & \Rightarrow {\left( {\frac{{107}}{{100}}} \right)^n} = \frac{{34347}}{{30000}} = \frac{{11449}}{{10000}} = {\left( {\frac{{107}}{{100}}} \right)^2} \cr & n = 2\,{\text{years}} \cr} $$

91. At what rate percent per annum of compound interest, will a sum of money become four times of itself in two years ?
a) 100%
b) 75%
c) 50%
d) 20%

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Principal}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{Amount}} \cr & \,\,\,\,\,\,\,\,\,{\text{1}}\,\,\,\,\,\,\,\,\,\,\,\, \to \,\,\,\,\,\,\,\,\,\,\,\,{\text{4}} \cr & 4 = 1{\left( {1 + \frac{r}{{100}}} \right)^2} \cr & 4 = {\left( {1 + \frac{r}{{100}}} \right)^2} \cr & r = 100\% \cr} $$

92. What will be the difference between the simple interest and compound interest accrued on an amount of Rs. 19200 of 3 years @ 12 p.c.p.a. ?
a) Rs. 722.6826
b) Rs. 798.1824
c) Rs. 802.5144
d) Rs. 862.6176

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{S}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left( {\frac{{19200 \times 12 \times 3}}{{100}}} \right) \cr & \,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{.6912}} \cr & {\text{C}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left[ {19200 \times {{\left( {1 + \frac{{12}}{{100}}} \right)}^3} - 19200} \right] \cr & = {\text{Rs}}{\text{.}}\left[ {\left( {19200 \times \frac{{28}}{{25}} \times \frac{{28}}{{25}} \times \frac{{28}}{{25}}} \right) - 19200} \right] \cr & = {\text{Rs}}{\text{. }}\left( {\frac{{16859136}}{{625}} - 19200} \right) \cr & = {\text{Rs}}{\text{. }}\left( {26974.6176 - 19200} \right) \cr & = {\text{Rs}}{\text{. 7774}}{\text{.6176}} \cr & {\text{Difference }} {\text{ = Rs}}{\text{.}}\left( {7774.6176 - 6912} \right) \cr & = {\text{Rs}}{\text{. 862}}{\text{.6176}} \cr} $$

93. On a certain sum of money, the difference between the compound interest for a year payable half yearly, and the simple interest for a year is Rs. 180. If the rate of interest in both the cases is 10%, then the sum is = ?
a) Rs. 60000
b) Rs. 72000
c) Rs. 62000
d) Rs. 54000

  Discussion

Answer: b
Explanation: Rate % = 10%,
Time = 1 year
Case (I) : When interest is calculated yearly, Rate = 10%
Case (II) : When interest is calculated half yearly
$$\eqalign{ & \Rightarrow {\text{New rate }}\% = \frac{{10}}{2} = 5\% \cr & {\text{Time = 1}} \times {\text{2}} = {\text{2 years}} \cr & {\text{Effective rate}}\% \cr & {\text{ = 5 + 5 + }}\frac{{5 \times 5}}{{100}} = 10.25\% \cr & {\text{Difference in rates}} \cr & {\text{ = }}\left( {10.25 - 10} \right)\% = 0.25\% \cr & {\text{0}}{\text{.25% of sum = Rs 180}} \cr & {\text{Sum = }}\frac{{180}}{{0.25}} \times 100 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs. }}72000 \cr} $$

94. The compound interest accrued on an amount of Rs. 25500 at the end of 3 years is Rs. 8440.50. What would be the simple interest accrued on the same amount at the same rate in the same period ?
a) Rs. 4650
b) Rs. 5650
c) Rs. 6650
d) Rs. 7650

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Let the rate be R}}\% {\text{ p}}{\text{.a}}{\text{. }} \cr & {\text{25500}}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} \cr & = 25500 + 8440.50 \cr & = 33940.50 \cr} $$
  $$ \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} = \frac{{33940.50}}{{25500}} = $$       $$\frac{{1331}}{{1000}} = $$  $${\left( {\frac{{11}}{{10}}} \right)^3}$$
$$\eqalign{ & 1 + \frac{{\text{R}}}{{100}} = \frac{{11}}{{10}} \cr & \frac{{\text{R}}}{{100}} = \frac{1}{{10}} \cr & {\text{R}} = 10\,\% \cr & S.I. = {\text{R}}s.\left( {\frac{{25500 \times 10 \times 3}}{{100}}} \right) \cr & = {\text{Rs}}{\text{.}}\,7650 \cr} $$

95. The difference between the amount of compound interest and simple interest accrued on an amount of Rs. 26000 at the end of 3 years is Rs. 2994.134. What is the rate of interest p.c.p.a ?
a) 17%
b) 19%
c) 22%
d) Cannot be determined

  Discussion

Answer: b
Explanation:
Let the R% p.a.
$$\left[ {26000 \times {{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^3} - 26000} \right] - $$       $$\left( {\frac{{26000 \times {\text{R}} \times 3}}{{100}}} \right) = $$     $$2994.134$$
$$ 26000\left[ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^3} - 1 - \frac{{3{\text{R}}}}{{100}}} \right] = $$        $$2994.134$$
$$ 26000$$ $$\left[ {\frac{{{{\left( {100 - {\text{R}}} \right)}^3} - 1000000 - 30000{\text{R}}}}{{1000000}}} \right] = $$        $$2994.134$$
$$ 26\left[ {\left\{ {1000000 + {{\text{R}}^3} + 300{\text{R}}\left( {100 + {\text{R}}} \right) - 1000000 - 30000{\text{R}}} \right\}} \right] = 2994134$$
$$ {{\text{R}}^3} + 300{{\text{R}}^2} = \frac{{2994134}}{{26}} = $$      $$115159$$
$$ {{\text{R}}^2}\left( {{\text{R}} + 300} \right) = 115159$$
$$ {\text{R = 19}}\% $$

96. The simple interest on a sum of money at 4% per annum for 2 years is Rs 80. The compound interest on the same sum for the same period is = ?
a) Rs. 82.60
b) Rs. 82.20
c) Rs. 81.80
d) Rs. 81.60

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Rate }}\% {\text{ = 4}}\% \cr & {\text{Time (}}{{\text{t}}_1}) = 2\,{\text{years}} \cr & {\text{SI for 2 years}} \cr & {\text{ = 4}} \times {\text{2 = 8}}\% \cr & {\text{CI for 2 years}} \cr & {\text{ = 4 + 4 + }}\frac{{4 \times 4}}{{100}} \cr & = 8.16\% \cr & \operatorname{Required} \,CI = \frac{{80}}{8} \times 8.16 \cr & = Rs.\,81.60 \cr} $$

97. The compound interest on Rs. 30000 at 7% per annum is Rs. 4347. The period (in years) is = ?
a) 2 years
b) $${\text{2}}\frac{1}{2}$$ years
c) 3 years
d) 4 years

  Discussion

Answer: a
Explanation:
$$\eqalign{ & {\text{Amount = Rs}}{\text{. }}\left( {30000 - 4347} \right) \cr & {\text{Amount = Rs}}{\text{. }} 34347 \cr & {\text{Let the time be }}n{\text{ years}} \cr & {\text{30000}}{\left( {1 + \frac{7}{{100}}} \right)^n} = 34347 \cr & {\left( {\frac{{107}}{{100}}} \right)^n} = \frac{{34347}}{{30000}} \cr & {\left( {\frac{{107}}{{100}}} \right)^n} = \frac{{11449}}{{10000}} = {\left( {\frac{{107}}{{100}}} \right)^2} \cr & n = {\text{ 2 years}} \cr} $$

98. The compound interest on a certain sum of money at 5% per annum for 2 years is Rs 246. The simple interest on the same sum for 3 years at 6% per annum is = ?
a) Rs. 435
b) Rs. 450
c) Rs. 430
d) Rs. 432

  Discussion

Answer: d
Explanation:
$$\eqalign{ & {\text{Effective rate of CI for 2 years}} \cr & {\text{= 5 + 5 + }}\frac{{5 \times 5}}{{100}} \cr & = 10.25\% \cr & {\text{Effective rate of SI for 3 years}} \cr & {\text{= 6}} \times {\text{3 = 18% }} \cr & {\text{Required SI}} {\text{= }}\frac{{246}}{{10.25}} \times 18 \cr & = {\text{Rs. 432}} \cr} $$

99. The difference between compound and simple interest on a certain sum for 3 years at 5% per annum is Rs. 122. The sum is = ?
a) Rs. 16000
b) Rs. 15000
c) Rs. 12000
d) Rs. 10000

  Discussion

Answer: a
Explanation:
$$\eqalign{ & P\left[ {{{\left( {\frac{{21}}{{20}}} \right)}^3} - 1 - \frac{3}{{20}}} \right] = 122 \cr & P\left[ {\frac{{{{21}^3} - {{20}^3} - 3 \times {{20}^2}}}{{{{20}^3}}}} \right] = 122 \cr & P\left[ {\frac{{9261 - 8000 - 1200}}{{8000}}} \right] = 122 \cr & P \times \frac{{61}}{{8000}} = 122 \cr & P = \frac{{8000 \times 122}}{{61}} \cr & P = {\text{Rs}}{\text{.}}\,16000 \cr} $$

100. Rs.2000 amounts to Rs. 2226.05 in 2 years at compound interest. What will be the rate of interest ?
a) 5%
b) 5.25%
c) 5.5%
d) 6%

  Discussion

Answer: c
Explanation:
$$\eqalign{ & {\text{Let the rate be R}}\% {\text{ p}}{\text{.a}}{\text{.}} \cr & {\text{2000}}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} = 2226.05 \cr & {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} = \frac{{222605}}{{200000}} \cr & {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} = \frac{{44521}}{{40000}} \cr & {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} = {\left( {\frac{{221}}{{200}}} \right)^2} \cr & 1 + \frac{{\text{R}}}{{100}} = \frac{{211}}{{200}} \cr & \frac{{\text{R}}}{{100}} = \frac{{11}}{{200}} \cr & {\text{R}} = \frac{{11}}{2}\% \cr & {\text{R}} = 5.5\% \cr} $$